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J.-M. Vanden-Broeck1 

Department of Mathematics, 
Stanford University, 

Stanford, Calit. 94305 

Contact Problems Involving the 
Flow Past an Inflated Aerofoil 
Steady potential flow around a two-dimensional inflated airfoil is considered. The 
aerofoil consists of a flexible and inextensible membrane which is anchored at both 
leading and trailing edges. The flow and the aerofoil shape are determined as 
functions of the angle of attack a, the cavitation number y, and the Weber number 
X. When y decreases to a critical value y0 (a, X), opposite sides of the membrane 
become tangent to each other at the trailing edge. For y < yo the aerofoil is par
tially collapsed near the trailing edge. The length of the region of collapse increases 
as y decreases and for y = - oo, the aerofoil is completely collapsed. The shape of 
the aerofoil and the value of y0 are determined analytically by a perturbation 
solution for X small. Graphs of the results are presented. 

1 Introduction 

We consider the deformation of a two-dimensional inflated 
aerofoil due to the steady potential flow of an incompressible 
fluid around it. The aerofoil consists of a flexible and inex
tensible membrane anchored at both leading and trailing 
edges (see Fig. 1). This configuration can serve as a model for 
various pneumatic structures, such as those sometimes used to 
cover sport arenas. 

The aerofoil is characterized by its internal pressure pb, its 
constant tension a, and its chord length c, while the fluid has 
density p, pressure pa at infinity, and velocity U at infinity. 
As we shall see, the shape of the aerofoil is determined by the 
angle of attack a, the cavitation number 

~Pu>v{Pu>, y= ipb - P . - — PU2)/ — PU2, (l) 

and the Weber number 
\ = 2pcU2/<j. (2) 

This problem was first considered by Newman and Tse [1] 
who obtained approximate solutions for a = 0, by using thin 
aerofoil theory. Nonlinear results for a = 0 were obtained by 
Vanden-Broeck and Keller [2], who considered the flow past a 
two-dimensional bubble attached to a wall. Their solution, 
when reflected in the wall, also describes the flow past an 
inflated aerofoil at zero angle of attack. 

In the present paper we solve the problem for arbitrary 
values of a by a perturbation solution for X small. Our results 
can be described as follows. 

As 7 tends to infinity, the membrane consists of two cir
cular arcs. As 7 decreases, the aerofoil becomes thinner. 
When 7 reaches a critical value 70(a,X), opposite sides of the 

Currently, Professor of Mathematics, Mathematics Department, 
Mathematics Research Center, University of Wisconsin-Madison, Madison, 
Wis. 53706. 
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Fig. 1 Sketch of the inflated aerofoil. The coordinates and the flow 
direction are also shown. The aerofoil is anchored at x = 0, y = 0, and 
at x = c, y = 0. 

membrane are tangent to each other at the trailing edge (see 
Fig. 2). This family of solutions becomes physically unac
ceptable for 7 < 7o because then opposite sides of the 
aerofoil cross over. Similar difficulties were encountered 
before by Flaherty, Keller, and Rubinow [3], Flaherty and 
Keller [4], and Vanden-Broeck and Keller [5]. (See Keller [6] 
for a review of these problems.) 

Following the general philosophy of the methods used by 
these authors, we redetermine the shape of the aerofoil by 
preventing crossing but allowing contact. This leads to a new 
family of solutions for y < y0 in which the aerofoil is par
tially collapsed near the trailing edge (see Fig. 3). The length 
of the region of collapse increases as y decreases, and for 7 = 
-00, the aerofoil is completely collapsed. The limiting 
configuration for 7 = - 00 is the single membrane or sail 
considered by Thwaites [7], Vanden-Broeck and Keller [8], 
and others. 

The solutions before and after contact are described, 
respectively, in Sections 2 and 3. 

2 Solution Before Contact 

We introduce the dimensionless variables by using c as the 
unit length and U as the unit velocity. Let the aerofoil shape 

Journal of Applied Mechanics JUNE 1982, Vol. 49/263 
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Fig. 2 The shape of the aerofoil is shown for two different values of 7 
with a = irli in units of Xc/4 based on (9). The unit along the x-axis is c. 
For y = - 1 opposite sides of the aerofoil are tangent to each other at x 
= 1. 

. 2 -

Fig.3 The shape of the aerofoil is shown for y = - 1.666 with a = ir/4 
in units of Xc/4 based on (18)-(20). The unit along the x-axis is c. 

be.y = r;* (x), 0 < x < 1. Here " + " and " - " correspond, 
respectively, to the top and bottom parts of the aerofoil. The 
conditions of attachment at the leading and trailing edges 
imply 

7^(0) = r,±(l) = 0. (3) 

On the aerofoil surface, the Bernoulli equation and the 
pressure jump due to the tension a yield 

Px + 
plfi p{q±? 

+ OK* =Pb< 0 < x < l . (4) 

Here q is the flow velocity and K the curvature of the aerofoil. 
In dimensionless variables this becomes 

(q±)2+y= (5) 

where 7 and X are defined in (1) and (2). 
The flow velocity is assumed to be V <j> where 4> is a har

monic function. At infinity we require that the flow have unit 
velocity and direction a: 

V(/>~(cosa,sino:)at 00. 

In addition, on both sides of the aerofoil, V <t> must be tangent 
to it, and the Kutta condition requires the velocity to be finite 
at the trailing edge x = 1. 

We shall solve the problem for X small, which corresponds 
to the tension a being large. When X = 0 or a = 00, (5) shows 
that K* (x) = 0 so the aerofoil is a straight line segment. It 
follows from (3) that this segment must lie on the x-axis from 
x = 0 to x = 1 so 7j(f (*) = 0. The subscript " 0 " denotes X = 
0. The complex velocity u - iv is given in terms of z = x + iy 
by (Carrier, Krook, and Pierson [9], p. 158) 

«0 - iv0 = cosa - isina[(z - 1 )/z]u2 • (6) 

We have chosen the circulation to be - 7rsina to satisfy the 
Kutta condition a tx = \,y = 0. 

Next we set X = 0 in (5). Then the right side of (5) becomes 
¥ 4(r/*)" • The left side can be evaluated by using (6), in which 
we choose the negative square root on the top part of the 
aerofoil and the positive one on the bottom part, and note 
that v0 = 0 on the aerofoil. In this way we get from (5) 

=F 4(r)x)" (x) = 7 + cos2a + sin2a/x± sin2a[(l -x)/x]1 /2 . (7) 

Now we differentiate (3) with respect to X at X = 0 to obtain 

^ 0 ) = ^ 1 ) = 0. (8) 

We next integrate (7) twice and use (8) to get ?)x(x). Then 
y^ix) = ri(Hx) + \ri£(x) + 0(X2). On using ?/<f = 0, and the 
result for r;*, we can write this in the form 

4 
— •q±(x)= ± (7 + cos2a)(x-x2)/2=Fsin2c«-/nx 
X 

- sin2a[(4x- l)sin- ' (2x - l)/8 

-7r(2x+l) /16 + (2x+l)(x-x 2 ) , / 2 /4]+0(X). (9) 

The result (9) is illustrated in Fig. 2 for various values of 7 
with a = 7r/4. 

As 7 tends to infinity, the nonlinear condition (5) shows 
that K+ ~ X7/4. Thus for 7 large, the shape of the aerofoil on 
either side is a circular arc of radius 4/X7. For X small, (9) 
shows that these circular arcs can be approximated by the 
parabolas ±7X(x-x 2 ) /8 . 

From (9) it can be shown easily that 

^'x-i=(.V\)'x=i, f o r 7 = - l . (10) 

Thus the critical value 70(<*,X) of 7, at which opposite sides of 
the membrane are tangent to each other at the trailing edge, is 
given asymptotically by 

264/Vol. 49, JUNE 1982 Transactions of the ASME 
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7o(a ,A)~- l+0(A 2 ) . (11) 

For 7 < - 1, equation (9) yields unphysical profiles in which 
opposite sides of the aerofoil cross over. In the next section we 
construct a physically acceptable family of solutions for y < 
- 1 by preventing crossing but allowing contact. 

3 Solution With an Interval of Contact 
To obtain solutions for y < y0, we require the aerofoil to 

be collapsed between x = c* and x = 1 (see Fig. 3). The value 
of c* is to be found as part of the solution. Let the shape of 
the aerofoil be described by the equations y - / * (x), 0 < x < 
c*, and y = fs(x),c* < x < 1. We shall solve the problem for 
A small. By proceeding as in Section 2, we obtain for the 
profile of the aerofoil the following differential equations 

T4(/0"(x) = 7 + cos2a + sin2 a/x±&in2a[(l -x)/x]l/2, (12) 

4 ( A ) " to = -sin2a[(l-x)/x]l/2. (13) 

The condition of attachment at the trailing and leading edges 
imply 

MO) = 0, (14) 

/1 (1) = 0. (15) 

In addition we impose continuity of the profile and of the 
slope at x = c*, i.e., 

mc)=fi{c*), (i6) 
(/xT(c*) = (/D'(c*). (17) 

We next integrate twice (12) and (13). The six constants of 
integration and the value of c* are evaluated by using the 
seven conditions (14)-(17). Thus we obtain after some 
algebra 

c* = -2s in 2 a / (7 + cos2a), (18) 
4 

Y / * to = "F (7 + COS2«)A:2 /2 =F sin2 a(xlnx - x) 

- sin2a[(4x - 1 )sin - ' (2x - 1 )/8 

-TT(4X+1)/16 + (2X+1)(X-X2),/2/4] 
IT 

+ x[—— sin2a±c* cos2a±lnc* sin2a±7C*] +0(X), 
o 

0<x<c* (19) 
4 

~fs(x)=-sm2a[(4x-l)sm-1(2x-l)/8 

- i r (2x+l ) /16 + (2x+l) (x-x 2 ) 1 / 2 /4] + 0(\), 

c*<x<\. (20) 

The results (18)-(20) are illustrated in Fig. 3 for y = - 1.666 
and a = 7r/4. 

For 7 = - 1 , (18) shows that c* = 1 and the solution (19) 
reduces to the solution (9). For y = -oo , c* = 0 and the 
aerofoil is completely collapsed. The limiting configuration 
for 7 = — oo is the single membrane or sail considered by 
Vanden-Broeck and Keller [8]. Equation (20) is then identical 
to the formula (11) given by these authors. It is interesting to 
note the right-hand side of (20) does not depend on 7. 
Therefore as 7 varies between - 1 and - 00, the point of the 
aerofoil with abcissa x = c* moves continuously along the 
curves = 4/\fs(x). 

Finally let us mention that the inflated aerofoil in Fig. 1 can 
be viewed as a sailwing aerofoil. Murai and Maruyama [10] 
considered a more general sailwing in which the leading edge 
is replaced by a rounded closed curve. The upper and lower 
membranes were required to separate smoothly from this 
curve. They reported that the upper and lower membranes 
sometimes cross each other. Although their numerical scheme 
appears to handle this difficulty, the present method could be 
used to resolve it in a more systematic way. This would lead to 
sailwing profiles that are partially collapsed near the trailing 
edge. 
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Natural Convection Past Inclined 
Porous Layers 
This paper describes a study of combined Rayleigh-Benard convection and 
Tollmien-Schlichting type of instability of a fluid in an inclined layer bounded by 
two permeable beds. Several types of flows, depending on the value of the Prandtl 
number, Pr, are studied using a fast convergent power series technique. Two dif
ferent convective movements, longitudinal and transverse rolls, based on different 
Prandtl numbers, are reported. The effect of slip at the nominal surface is to 
augment the instability and change the critical Grashof number, Gr, and critical 
Rayleigh number, Ra, markedly for small permeability parameter a, being in
dependent of Gr and Rafor large a. The effect of inclination </> is to inhibit the onset 
of instability in the case of air and to augment it in the case of mercury. It is shown 
that at maximum inclination (i.e., <j> = ir/2), the instability sets in as transverse 
rolls, irrespective of the value ofPr. In the case of mercury, the transverse rolls exist 
for all <t>, whereas in the case of air, they are limited only to certain 4>- The cell 
pattern changes dramatically in the range <t> = ir/6-ir/4. 

1 Introduction 
The instability of an inclined layer of fluid bounded on 

both sides by permeable beds, due to combined thermal 
stratification and viscous shear is investigated in this paper 
because of its natural occurrence and its importance in the 
process of technology (for example, chemical engineering and 
some oil recovery techniques). It is also of interest in many 
geophysical problems (for example, the determination of 
reservoir characteristics in the geothermal region) and 
biomechanical problems (for example, blood flow in 
pulmonary alvelor sheet, see Fung and Tang [1, 2]) where the 
layer is bounded on both sides by porous material. In the 
geothermal region, the main mechanism of transfer of heat 
from the deep igneous rocks to shallow depths is buoyancy 
induced convection. Meteoric liquid percolating down to 
depth in a permeable formation is heated directly or indirectly 
by the intruded magma and is then driven buoyantly upward 
to the top of the aquifer where it can be trapped through drill 
holes. A viable geothermal reservoir usually consists of a 
sloping layer bounded on both sides by porous beds. 
Therefore, the criterion for the onset of convection in such a 
model considered in this paper may shed some insight on the 
study of transport processes in geothermal reservoirs. 

The instability of a layer of fluid due to thermal 
stratification (known as Rayleigh-Bernard problem, see 
Chandrasekhar [3]) or due to viscous shear (known as 
Tollmien-Schlichting type of oscillations, see Betchov and 
Criminal, Jr. [4]) has been extensively investigated when the 
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layer is bounded by impermeable rigid boundaries. Much 
attention has also been given to the study of instability of an 
inclined layer of fluid bounded on both sides by rigid im
permeable plates (see Hart [5], Ruth [6], and Unny [7]). 
Natural convection in an inclined porous layer is also given 
considerable attention (see Bories and Combarnous [8], 
Kaneko, et al. [9], and Combarnous and Aziz [10]). However, 
we know relatively little about the instability of an inclined 
layer of fluid bounded on both sides by a porous material, 
which is considered in this paper. 

The core problem here is to specify the proper boundary 
conditions at the permeables boundaries, since the vertical 
transport of heat depends strongly on what happens near the 
boundaries. Until recently, it was assumed that the no-slip 
boundary conditions are valid at the permeable boundaries. 
However, Beavers and Joseph ([11], hereafter called BJ) have 
shown that this no-slip condition is no longer valid at the 
porous boundaries and postulated the slip boundary condition 
called the BJ slip condition and verified it experimentally. 
This BJ condition was later confirmed experimentally by 
others (Beavers et al. [12], Taylor [13], and Rajasekhara [14]). 
Recently Channabasappa and Ranganna [15] have established 
the existence of a slip even in the case of an inclined channel. 
This velocity slip not only causes skewing of the main flow 
velocity profile in the channel but also permits a nonzero, 
streamwise disturbance velocity at the walls. The existence of 
the slip at the permeable boundary is based on the assumption 
of laminar flow. Therefore it is of interest to determine the 
condition for the transition from conduction to convective 
flow, which is the object of this paper. Here, we study the 
linear stability of a laminar flow in a channel bounded on 
both sides by a permeable material and inclined at an angle 4> 
to the horizontal (Fig. 1). The novel feature of the linear 
stability problem considered here is the coupling between 
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Fig. 1 Physical mode! 

Rayleigh-Benard type of instability due to uniform heating 
from below and cooling from above and Tollmien-Schlichting 
wave-like instability due to shear. 

When the channel is horizontal and bounded on one side by 
a permeable bed, Sparrow, et al. [16] have investigated the 
linear stability using finite-difference technique. We note that 
the difficulty and the computer time required in solving the 
stability equation using finite difference technique has 
precluded a detailed study of the present problem. Hence the 
solution technique used in the present study is the classical 
power series method (Sparrow, et al. [17], and Ruth [6]) 
which is found to be a fast converging method. It is shown 
that the instability sets in at a lower Grashof number than that 
of the fluid in the channel bounded on both sides by rigid 
impermeable boundaries due to reduction in friction at the 
bounding surfaces. In particular, it is shown that there exists a 
fairly close analogy between convective motions in the present 
problem and in a fluid layer bounded by rigid boundaries. 

2 Mathematical Formulation 
The physical configuration of the problem under study is 

shown in Fig. 1. The fluid is contained between two parallel, 
porous layers of infinite extent, separated by a distance "h" 
apart and inclined at an angle 4> to the horizontal. The tem
perature difference between the layers is AT, the upper layer 
having temperature T0 - AT/2 and the lower T0 + AT/2. 
Cartesian coordinate system (x, y, z) is taken as shown in Fig. 
1, with corresponding velocity components (u, v, w). 

For this configuration, the governing equations of motion 
for a Boussinesq fluid, made dimensionless using h for length 
scale, v/h for velocity scale, AT for temperature, and pgh for 
pressure, are 

V-q = 0 (2a) 

9q 
— +(q»V)q=-r/V/7 + r)a-Gr(r-r0)a+V2q (2b) 
at 

dT 1 
— + (q«V)T = v2r (2c) 
dt Pr 

where q is the velocity, T the temperature, T0 the ambient 
temperature, p the pressure, p the density, a = 
cos 4>), the gravity vector, 

•q=ghi/v2 

Gr = rifiAT, the Grashof number, 

Cpfi 

(sin 4>, 0, 

Pr = 
K 

the Prandtl number 

g the gravitational acceleration, n the viscosity, v the 
kinematic viscosity, |3 the thermal expansion coefficient, Cp 

the constant pressure specific heat and K is the thermal 

conductivity. Equations (2a)-(2c) reduce to those given by 
Hart [5] when </> = 90-5 and with suitable dimensionless 
parameters. 

The boundary conditions are, 

du 1 
— = -aa(um - Q , ) a t z = -
dz 2 

du 

dz 
= aa(uB2~Q2)alz = 

y=w = 0 a t z = ± -
2 

1 1 
T- TQ ± - at z = ± -0 2 2 

p = 0atx = 0,z = 0 

(2d) 

(2e) 

(2/) 

(2g) 

(2/0 

where um and uB2 are the slip velocities at the upper and lower 
interfaces, respectively, and Qx and Q2 are the Darcy 
velocities at the edge of the boundary layers, i.e., z = ± 1/2 
± \/a (see Rudraiah and Veerbhadraiah [18] where they have 
shown that the boundary layer is of order \/a). 

The Darcy velocity in the bed is given by, 

e=-l[% + {l-TiT-T°)h+\ (2/) 
Gr 
— (T-
V 

where a = hi, yfk is the permeability parameter, k is the 
permeability of the porous material, and a is the slip 
parameter. This Darcy velocity is valid away from the 
nominal surface (see Rudraiah and Masuoka [19]). 

Conditions (2d) and (2e) are the BJ slip conditions and 
conditions (2g) imply that the boundaries are isothermal. The 
Darcy equation (20 is obtained under the assumption of the 
same pressure and temperature in the flows above and in the 
bed. 

2.1 Basic Flow. The flow is due to an imbalance between 
the pressure and buoyancy forces when Gr ^ 0. At low Gr, 
this motion forms the base flow, in which the velocity u is 
only in the axial direction and is a function of z and in
clination 4> only. The corresponding temperature is a function 
of z only and pressure is a function of both x and z. Thus the 
required basic flow satisfying the boundary conditions 
(2d)-(2h) is, 

Gr sin </> 

6 [<•-(;•*] 
Gr sin 4> 

UBI — ~ UB\
 = —T̂  / 12 

Tb = T0~z 

/ Gr A 
, = — I z + —- z I cos </> —x sin <t> 

Gr sin <t> 
Q= ~^z 

Qi = -Qx 
Gr sin </> / 1 G4) 

<j + 6a r 12a "1 
/ = 1 + 

a(2 + aa) L a(6a + a) J 
where the sufffix b denotes the base flow. 

(2J) 

(2k) 

(21) 

(2m) 

(2ri) 

(2o) 

(2p) 

2.2 The Perturbation Equations. At sufficiently large Gr, 
the conduction base flow regime, discussed in Section 2.1, 
becomes unstable and suffers a transition to convection 
regime. Transitions resulting in transverse rolls with their axes 
in the ^-direction are considered in this paper. For this, we 
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Table 1 Critical a, Gr, and Ra for Pr = 0.025 and 0.71. 

Pr 

0.025 

0.71 

0.025 

0.71 

a 

00 

10,000 
2000 
1000 
250 
100 

00 

10,000 
2000 
1000 
250 
100 

00 

10,000 
2000 
1000 
250 
100 

00 

10,000 
2000 
1000 
250 
100 

ac 

2.889 
2.883 
2.861 
2.833 
2.663 
2.373 

3.095 
3.087 
3.073 
3.050 
2.943 
2.787 

2.783 
2.732 
2.709 
2.681 
2.508 
2.201 

2.868 
2.860 
2.833 
2.80 
2.601 
2.267 

<j> = lOdeg 

(Gr)c. 

31100.413 
30869.604 
29988.052 
28973.359 
24460.890 
20016.291 

2527.4172 
2511.0511 
2449.1400 
2378.9218 
2072.4968 
1749.1672 

(/> = 50 deg 
9449.1286 
9374.8320 
9089.9037 
8760.0795 
7286.0908 
5866.5191 

7644.4398 
7599.8691 
7334.8705 
7056.1279 
5861.8610 
4777.4387 

(Ra)c 

777.5103 
771.7401 
749.7013 
724.3340 
611.5223 
501.5323 

1794.4662 
1782.8462 
1738.8894 
1689.0344 
1471.4727 
1241.9087 

236.2282 
234.3708 
227.2476 
219.002 
182.1523 
146.663 

5427.5523 
5381.7070 
5207.7580 
5009.8508 
4161.9231 
3391.9814 

ac 
2.773 
2.767 
2.744 
2.715 
2.542 
2.237 

2.822 
2.816 
2.793 
2.766 
2.622 
2.388 

2.702 
2.695 
2.674 
2.646 
2.471 
2.164 

2.810 
2.803 
2.780 
2.749 
2.557 
2.219 

(/> = 30 deg 

(Gr), 

13661.636 
13555.529 

113149.011 
12679.048 
10581.099 
8551.1534 

5596.4447 
5521.6223 
5248.7324 
4958.8829 
3925.1275 
3181.1417 

<t> = 90 deg 
7657.120 
7596.1617 
7362.1555 
7090.8989 
5877.2908 
4713.9528 

8037.5955 
7973.2631 
7726.7036 
7441.6597 
6176.4118 
4981.0913 

(Ra)f 

341.5409 
338.8882 
328.7253 
316.9762 
264.5473 
213.7788 

3973.4757 
3920.3518 
3726.60 
3520.8068 
2786.8405 
2258.6109 

191.428 
189.9040 
184.0539 
177.2725 
146.9323 
117.8488 

5706.6928 
5661.0168 
5485.9595 
5283.5783 
4385.2523 
3536.5748 

superimpose on the flow a small symmetrical disturbance of 
the form 

u = ub(z)+u' (x,y,z, t) 

v = v' (x,z, 0, w=w'(x,z, 0 

T=Tb(z) + T'(x,z,t) (2<7) 

p=pb(x,z)+p'(x, z, t) 

where the primes denote the perturbed quantities which are 
assumed to be very small compared to the base flow. Sub
stituting (2q) into the equations (2a) - (2c), linearizing and 
assuming that all the perturbed quantities vary in the form 

(D2-a2)Q = 0 (3a) 

The solution of this equation satisfying the condition (2a) is 9 
= 0. 
That is, the temperature perturbation vanishes and the in
stability is strictly due to shearing. In this case, equation (2s) 
using equation (2j), takes the form 

(D2 - a2)2 W+ [ l^- [z'-{\ + / ) z] + iaG'r : W 

iaGr 

we get, 

(D2-a2 

and 

(function of z) Exp (iax + ct) 

- c) (D2 - a2) W-a2Gr cos </>9 - ia Gr sin 4>DQ 

+ (ia3 ub + ia D2 ub) W- iaubD
2 W= 0 

(2r) 

(2s) 

(20 (D2 - a2 - Pr c) 9 + Pr W- Pr iaub 9 = 0 

where Wis the velocity, 9 the temperature, c( = cr + ici) the 
wave velocity, a the horizontal wave number, and D = d/dz. 
The corresponding boundary conditions are, 

1 , 1 
Q=W=DW± —D2W=0atz=±~ 

ao 2 
(2u) 

We note that when uB = 0 (i.e., quiescent state) and <t> = 0 
equations (2s) and (2t) tend to the usual Rayleigh-Benard 
equations given by Chandrasekhar [3]. 

3 Marginal Stability Analysis 
Since there are no external constraints like magnetic field, 

rotation, or salinity gradient on the motion, we assume that 
the marginal state is valid immediately after transition so that 
c = 0 in equations (2s) and (2t). 

We shall consider the cases: 

(i) Pr = 0 (Pure Tollmien-Schlichting instability) 
(;7) Pro, <j) = 0 (Rayleigh-Benard Problem) 
(Hi) Pr ?* 0 (combined Rayleigh Benard and Tollmien-
Schlichting instability) 

3.1 The Case When Pr = 0. In this case shear would be 
dominant and it corresponds to thermally perfectly con
ducting fluids. Then equation (20 becomes, 

[z2-(1-+f)z\)D
21V=0 (3b) 

where Gr = Gr sin <j>-
We note that, since Gr scales with sin 4>, a solution for one 
particular angle will provide stability condition for all angles. 
A solution of equation (3b) is obtained in Section 4 using the 
power series method. 

3.2 The case when cf> = 0, This is the usual Rayleigh-
Be"nard problem with porous boundaries. In this case 
equations (2*) and (20 take the form, 

C D 2 - a 2 ) 2 ^ - a 2 G r 9 = 0 (3c) 

and 

(D2-a2)Q + PrW=0 (3d) 

These simplify to the form 

(D2~a2)iW+a2RaW=0 (3e) 

where Ra = Pr«Gr, is the Rayleigh number and Pr does not 
appear explicitly. The eigenvalues of equation (3e) are 
determined using the power series method as explained in 
Section 4. 

3.3 The Case When Pr ?± 0. Here we have the coupling 
between Tollmien-Schlichting wave-like instability due to 
shear and Rayleigh-Benard type of instability due to uniform 
heating from below and cooling from above. Equations (2^) 
and (20 using equation (2j) take the form, 

(D2 -a2)2 W-a2Qx cos <£9-ia Gr sin 0Z>e 

+ -w 3 Grs in</ ) | z 3 - (- +f)z\ + w Gr sin </>z W 

- - ia Gr sin </>[z3 - ( - +/)Z\D2 W=0 (3f) 
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and 

(Dz-a2)Q + Pr ^ - - w P r G r s i n ^ k 3 - (- + / ) z ] e = 0 

(3g) 

4 The Power Series Solution 
In this section, the power series solution for equations (3/) 

and (3g) are obtained for Pr ^ 0. The solutions for Pr = 0 
and 0 = 0 can be obtained as particular cases. ' 

A general solution of equations (if) and (3g) can be con
structed in the form 

mz) = £ bkz
k-

k = \ 

oo 

Q(z)= £<***-' 

(4a) 

(4b) 

where bk and ck are arbitrary constants. These constants are 
determined by substituting equations (4a) and (4b) into 
equations (3/) and (3g). 
Assuming, 

bk = Sbk„G„,ck = Sckn G„ (4c) 

where 

G„ = (bl,b2,b},b4,cl,c2) (4d) 

is the general solution vector Sbkn and Sckn are particular 
solution vectors, we obtain 

Sbkn = (5ks, 5k2, 5k3,8k4,0, 0) for 1 s £ < 4 

Sck„ = (0, 0, 0, 0, 5*,, 8„) for 1 < k < 2 

where 5ki is the Kronecker delta. 
For k > 4, 

Sbk„ = 
1 

[2a2(k-l)(k-4)Sbk„2<„ 
(k-l)(k-2)(k-3)(k-4) 

~-a4Sbk^4i„ +a2Gr cos<t>Sck_4>nAlJ(^4 

+ /«Gr sin</)(Ar-4)ScA._3i„Aj A._3 

-Grsin</>[- /a 3S^_ 7 ,„AU-7 - Q " ? 3 ( ^ + / ) 

-ia+-ia(k-6)(k-7))sbk^„Alik_5 

+ \ia(l- + / ) (*-4)(*-5)Sfe t_3 , f l j] (4e) 

and for k > 2, 

1 
Set,, = a2Sci. 

*" (k-\)(k-2) V k 
,-PiSbk 

1 

(4/) 

where 

+ - /a Pr Gr sm<j>Sck_5<n A, Ar_5 
o 

• Pr Gr sin4>(- + / ) Sc*_3 i„AU-3] 

A„,„=0, m < « 

A„,„ = l , m > « 

Since G„ is arbitrary and nonzero when the solution is 
nontrivial, it has been removed from the preceding equations. 
The constants bt (i = 1-4) and Cj (J = 1,2) must be chosen 
to satisfy the boundary conditions (2«). The condition for the 
nontrivial solution of these constants leads to the charac
teristic equation, 

34 

3-2 

30 

28 

26 

2.4 

22 

20 1 1 

f-o-

10° 

30° 

• V 

90° 

I 

3-8 

3-7 

3 6 

3-5 

a: 3-4 

-J 3 - 3 

3-2 

3-1 

3-0 

where 

10' 10J 10" 

Fig. 2 Effect of a on (Ra)c for Pr = 0.025 

10" 10J 10" 

(4*) 

Fig. 3 Effect of a on (Ra)c for Pr = 0.71 

\Amn\=0 

Aln=Sbkn(0.5)k-1 

A2„=Sbk„(-0.5)k-1 

Ay, =Sbkn \(k- 1)(0.5)*-2 + — (k- l)(A:-2)(0.5)*-3l 
L aa J 

^ 4 „ = S ^ „ [ ( * - l ) ( - 0 . 5 ) * - 2 

- - ( A : - l ) ( A : - 2 ) ( - 0 . 5 ) * - 3 l 
<xo J 

^ 5 „=&,„ (0 .5 )* - ' 

A6„=Sckn(-0.5)k-> 

where k ranges from l-oo. 
The required eigenvalues are determined using the 

following numerical procedure. For a particular value of a, 
Gr is given a guess value and \Amn I is calculated. Using an 
appropriate iteration technique Gr is varied until \A„,„ I = 0 
up to a certain approximation. To find the critical value of 
Gr, its value is calculated for a range of values of a. The 
minimum value of Gr is taken as Grc and the corresponding a, 

(Ah) 
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L-a 

2.6 

2-4 

2.2 

7(1 

4-0 

3 9 
U 

i2 3-8 

en 
o 

- • 3 - 7 

3-6 

3 .5 
10' 10J 10" 

Fig. 4 Effect on a on (G' r)c and a c for Pr = 0 

The same procedure is adopted to find the eigenvalues in 
the particular cases for Pr = 0 and 0 = 0 and the results are 
discussed in the following section. 

5 Discussions 
The stability of flow in an inclined channel bounded on 

both sides by porous layers with uniform heating from below 
and cooling from above has been studied for various in
clinations 4>, when Pr = 0 (absence of buoyancy force, i.e., 
pure shear), 0.025 (mercury), and 0.71 (air), for different 
values of a, using a simple, fast convergent power series 
technique. Gr is iterated on using Newton-Raphson method 
up to an accuracy of 10~8. The accuracy of the results 
depends on the number of terms used in the power series. It 
has been found that convergence in Gr to 8 figures accuracy 
requires 70 terms. 

5.1 The Case When Pr ^ 0. In Table 1, we have the critical 
Rayleigh numbers (Ra)c and critical wave numbers, ac, for 
different inclinations 4> and various values of a when Pr = 
0.025 and 0.71, with shear dominating in the former case and 
thermal gradient predominant in the latter case. The critical 
Rayleigh numbers are plotted against different a's in Figs. 2 
and 3. We note that there is a considerable decrease in (Ra)c 

for values of a between 100 and 400 due to the slip at the bed, 
with no appreciable change for large values of a. For large 
values of a the (Ra)c tends to the values of fluid layer bounded 
by impermeable boundaries considered by Ruth [6]. It is 
interesting to note that with increase in <f> (Ra)c decreases for 
Pr = 0.025 and increases for Pr = 0.71. This is because of 
different nature of buoyancy force phenomena in mercury 
and air. In the case of mercury (small Pr = 0.025) the control 
of convection is due to the tangential component of buoyancy 
which decreases with a decrease in inclination from the 
vertical. Hence convection sets in at a higher critical Rayleigh 
number as evident from Fig. 2. In the case of air, however, the 
normal component of buoyancy force is dominating and a 
very different kind of flow drive arises. This sets up a 
secondary flow in addition to the base flow. Hence the system 
becomes more unstable and a reverse phenomena to that in 
mercury occurs (see Fig. 3). 

4-6 

4-4 

4-2 

4-0 

3-8 

36 

3-4 
U 

ra 

2 3.2 

Ol 

o 
J 3 - 0 

2-8 

2-6 

2-4 

22 

20 

Longitudinal ro l ls 

Transverse rol ls 

Longitudinal roll regime 

,4 

Fig. 5 Critical Ra for ff = 102 ,103 and104 

Fig. 6 Critical Ra for a = 250, 2 x 1 0 
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Table 2 

a 

Critical a and Gr ( = 

ac 

Gr sin 0) for Pr = = 0 

(Gf)c. 

Table 4 Comparison of critical Gr for Pr = 0.71 

10,000 
2000 
1000 
250 
100 

2.688 
2.682 
2.661 
2.633 
2.456 
2.145 

7930.055 
7867.1273 
7625.4095 
7345.0095 
6090.8115 
4900.4230 

Table 3 Critical a, Gr, and Ra, </> = 0 

ac 
(Gr)c (Ra)c 

10,000 
2000 
1000 
250 
100 

3.117 
3.112 
3.095 
3.076 
2.971 
2.824 

2405.2982 
2390.0779 
2332.4242 
2266.8695 
1978.7683 
1670.5023 

1707.7617 
1696.9553 
1656.0211 
1609.4773 
1404.9254 
1186.0566 

5.2 The Case When Pr = 0. As Gr scales with sin 4> in this 
case, (Gr),, the critical Gf( = Gr sin 4>) for various values of a 
have been calculated and are given along with the critical wave 
numbers in Table 2. These provide the stability conditions for 
all angles. 
For examples: 

7930.055 
VJ »<-" " " 

(/'/') for a = 

and 

(Hi) for a = 

"> V u l / c — 

104,(Gr)c 

102,(Gr)c 

sin 4> 

7867.1273 

sin 4> 

4900.4230 

sin <t> 

(5a) 

(5b) 

(5c) 

Figure 4 shows the variation of (Gr)c and ac with respect to a. 
As in Section 5.1, we note that (Gr)c decreases considerably 
for small values of a and tends to a constant value for large a 
because of the existence of the slip. From equations (5a)-(5c), 
it is clear that (Gr)c is minimum for <j> = 90 deg and these 
equations are not valid for <j> = 0. The case <f> = 0 is treated 
separately in the following section. 

5.3 The Case When 0 = 0. The critical Rayleigh numbers 
and critical wave numbers, in this case, are computed and are 
shown in Table 3. The critical Rayleigh numbers are denoted 
as (Ra)co. Following Birikh, et al. [20], stability condition for 
longitudinal rolls is derived in the form 

(Ra)c = 
cos 4> 

(5d) 

where (Ra),^ = (Ra) when <j> = 0. 
Transverse rolls will occur only if their (Ra)c is less than the 

(Ra)c in equation (5d). Figures 5 and 6 show the regimes 
where transverse and longitudinal rolls occur for various Pr 
and a. For </> = 90 deg, the instability results in transverse 
rolls irrespective of Pr. For Pr = 0.025, the transverse rolls 
occur for all inclinations. For Pr = 0.71, the regions where 
the transverse rolls occur are limited. The physical ex
planation for the existance of longitudinal rolls for most 
angles (< 70 deg) in the case of Pr = 0.71 (air) and for the 
existence of transverse rolls for all angles in the case of Pr = 
0.025 (mercury) is the same as the different nature of com
ponents of buoyancy force phenomena explained in Section 
5.1. It is interesting to note that although the effect of porous 
boundaries is to lower the critical Rayleigh numbers, the 
inclinations for transverse rolls to occur are almost unaffected 
by a when Pr = 0.71. 

5.4 The Critical Wave Number, ac. It is found that, in 
general, (Gr)c had to be calculated to 8 figure accuracy in 
order to find ac to 4 figure accuracy. The effect of Pr and a on 

Hart [5] 
(Gr)c(o—oo) 

Ruth [6] 
(Gr)c(a-oo) 

Present case 

(Gr)c(a=10:') 
0° 

10° 
30° 
50° 
90° 

2363 
2420 
6793 
7059 
8230 

2405.2983 
2527.4172 
5596.4447 
7644.4398 
8037.5955 

2390.0779 
2511.0511 
5521.6223 
7579.8691 
7973.2631 
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the critical wave number ac for various inclinations are shown 
in Figs. 7 and 8. As a decreases ac also decreases. We see that 
in Fig. 7, the difference in ac for a = 102 and a = 103 is quite 
large. So, as a decreases, the wave lengths are increased. 
Thus, for smaller values of a, the convection cells are 
elongated. Also, there is a notable change in ac between q> = 
30 and </> = 40 for Pr = 0.71, a = 100,250. For these values 
of a, ac decreases in this region whereas for higher values of a, 
ac increases between <j> = 30 deg and <j> = 40 deg. We note 
that at Pr = 0.025, the shear would be very important and the 
indirect convective instability exhibiting transverse rolls with 
low wave numbers prevail. At Pr = 0.71 instability results in 
the form of longitudinals rolls having larger wave numbers. 

Comparison of the results for a — oo with those for other 
values of a reported in Tables 1-3 reveals that the effect of 
decrease in a is to make the system less stable because of the 
reduction in friction at the boundaries. It is also of interest to 
compare our results with those of Hart [5] and Ruth [6] for a 
— oo. This is done in Table 4 for Pr = 0.71. In this table, we 
have not reported the results of Unny [7] since they do not 
agree well with our results. Although agreement with Unny [7] 
is not obtained, the good agreement with Hart [5] and Ruth 
[6] can be interpreted as validation of the power series method 
employed in this paper. 

6 Conclusion 
The power series method employed in this paper to study 

convection in an inclined channel bounded on both sides by 
porous beds reveals a close analogy between the results of the 
present problem and those of a fluid layer studied by Hart [5] 
and Ruth [6]. Two main conclusions are as follows: 

(/) The convective movements in the case of mercury (Pr = 
0.025) are in the form of transverse rolls for all angles. In the 
case of air (Pr = 0.71), however, the convective movements 
are in the form of longitudinal rolls for the range of in
clination 0 deg < 4> < 70 deg and transverse rolls exist only in 
the narrow region of 70 deg < </> < 90 deg. The physical 
explanation for the existence of these different convective 
movements is given based on the dominant role of the 
components of buoyancy force. 

(if) The effect of porous boundaries is to make the system 
less stable due to the existence of the slip at the nominal 
surfaces. Further, the critical Grashof, Rayleigh, and wave 
numbers vary considerably with the porous parameter a, 
decreasing with decreasing a because of the reduction in 
friction at the porous boundaries. In the case of air, two 
different behaviors of critical numbers ac are observed (Figs. 
7 and 8). For 30 deg < <t> < 40 deg, and for a = 100,250, ac 

decreases in this region and the convection cells are elongated. 
For higher values of a, however, ac increases for 30 deg < </> 
< 40 deg. 
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Calculation of Unsteady Transonic 
Pressure Distributions by the 
Indicia! Method 
A method for the rapid estimation of complete unsteady transonic pressure 
distributions is developed. The two key elements of this method are (1) the indicia! 
method and (2) the strained coordinate technique. The indicial method permits the 
determination of the response of a system to an arbitrary schedule of perturbations 
once the response of the system to a step change in one of the perturbing variables 
(the indicial response) is known. The strained coordinate permits the movement of 
discontinuities in the solution (e.g., shock waves) to occur as the solution develops 
in time. Together, these two techniques provide detailed information on the time 
development of pressure distributions over an airfoil that is of use in aeroelastic 
applications such as control surf ace flutter and active control design. Examples of 
both oscillatory and transient perturbations are given, as well an example that 
demonstrates the potential of this method for aeroelastic tailoring and active 
control. In all cases, the agreement with more expensive finite-difference 
calculations is good, and the time savings is about an order of magnitude. 

1 Introduction 

Aeroelastic effects on aircraft flying at transonic speeds are 
extremely important, but very difficult to estimate. The main 
difficulty lies in calculating unsteady aerodynamic loads with 
sufficient accuracy to permit flutter prediction. Moreover, 
such a calculation should be fast enough to allow its repeated 
use by designers in parametric studies. 

Although recent advances in numerical and analytical 
techniques have permitted fairly routine calculations of the 
steady aerodynamic loads in transonic flow, even in three 
dimensions, corresponding techniques for unsteady loading 
have yet to be developed. Presently available numerical 
techniques are too slow and costly to be used repetitively by 
designers. 

There have been two basic approaches to unsteady tran
sonic flow calculations. Ballhaus and Goorjian [1] integrate 
the flow field numerically in the time domain, using finite 
differences. This method can be combined with an aeroelastic 
program to yield a direct numerical simulation of the un
steady motion of the airfoil. The principal drawback to this 
method is its cost in computing time. Since the simulation 
must be repeated for every new choice of flight parameter, 
repetitive design calculations are prohibitively expensive. 

Traci, Albano, and Farr [2] and Weatherill, Ehlers, and 
Sebastian [3] analyze the aerodynamic problem in the 
frequency domain. Frequency domain methods have also 
been extended to three-dimensional flows. The drawback here 
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is that only the harmonics of a chosen fundamental frequency 
are considered in the calculation and are available for 
coupling to the aeroelastic calculation. It is therefore ex
pensive to run the calculation for all frequencies of interest. 
Furthermore, in the absence of a shock-fitting algorithm, the 
frequency domain method constrains the shock position to its 
mean, steady location, which is a serious disadvantage, 
especially for modern supercritical wings in which the 
physical shock motions can be considerable. 

Clearly, there is a need for a rapid, repeatable, sufficiently 
accurate method for computing unsteady transonic airloads. 
The indicial method, described in Section 2, is a most 
promising approach to this problem. Ballhaus and Goorjian 
[4] have used this method to estimate unsteady lifts and 
moments such as would be needed in a flutter calculation. In 
many cases of interest, only integrated quantities such as lifts 
and moments are needed, and their method provides the 
needed rapid estimation of these forces. 

There are cases where a more detailed knowledge of the 
pressure distribution is necessary. The design of control 
surfaces requires that the unsteady forces on the surface, both 
for infinitesimal motions (onset of flutter) and for larger 
amplitude motions (associated with the design of active 
controls) be calculated. Airfoil design optimization 
procedures, which include unsteady effects, require estimates 
of the complete unsteady pressures. Additionally, knowledge 
of the distribution of unsteady forces gives insight into the 
mechanisms of unsteady flow. 

In the extended indicial method described in the following, 
after two initial finite-difference calculations have been 
performed, it is possible to obtain complete unsteady 
pressures for additional transonic flows for essentially the 
same cost as for obtaining lifts and moments, and at far less 
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cost than an additional finite-difference calculation. Large 
shock excursions are permitted and predictable, even those of 
the order of 30 percent chord or more, because of the use of a 
strained coordinate technique. 

2 Comments on the Indicial Method 

For the aeroelastic applications we just mentioned, we want 
to be able to predict, rapidly and accurately, the pressures on 
an airfoil that undergo a small disturbance in one or more of 
its flight parameters, such as angle of attack or profile shape. 
Such changes may be either oscillatory (as in flutter) or 
transient (as in gusts). For transonic flows, these phenomena 
are described by the low-frequency transonic small distur
bance (TSD) equation 

2»e ^ [ 0 ^ ( 7 + w s 
52/3 62/3 4>xx + < (1) 

Here, <j> is the velocity potential, [/„ and M „ are the free 
stream velocity and Mach number, respectively, k = uc/Ux 

is the reduced frequency, c is the chord length, 7 is the ratio of 
specific heats, 8 is the thickness-to-chord ratio, and q is a 
transonic scaling parameter. The quantities x, y, t, </> have 
been scaled by c, cd'1/3, u~', and c82/i U„, respectively. 

Unfortunately, equation (1) is nonlinear. When dealing 
with these small disturbances, it would be a tremendous 
advantage for us, both conceptually and computationally, to 
be able to linearize this equation in the neighborhood of some 
exact or numerical steady solution, since we could then 
construct new solutions via the principle of superposition. 

Transonic flows present an obstacle to such linearization 
because they possess discontinuities (shocks) that move in 
response to the disturbance. In the region where the shock 
moves, the effect of a small perturbation in, say angle of 
attack will be a large change in pressure. A means of over
coming this obstacle is to introduce strained coordinates that 
move with the shock. The shock motion is assumed to vary 
linearly with the perturbation parameter. In these coor
dinates, the unsteady perturbations to pressure are indeed 
small compared to steady values and the TSD equation can be 
split into a nonlinear steady equation and a linear unsteady 
equation. Since the unsteady effects are represented by a 
linear equation, the principle of superposition can be applied. 

In this paper, we shall construct solutions of the unsteady 
component of the split TSD equation in strained coordinates 
by the indicial method (see also [1]). We wish to find a 
solution u (t) to the equation 

L{u] = e{t), (2) 

where L[u] is a linear operator. 
Here e(t) represents the disturbance and can be considered 

either as a right-hand side of the differential equation or as a 
change to the boundary condition. It may be an arbitrary 
function that vanishes for times t < 0. Now, we assume that 
we can construct a solution u(t) of the equation 

L[u] = d(t-t0) (3) 

where d(t0) is a unit step function at time t0. The solution 
ue(t - t0) is called the indicial response of the system. In our 
work, the indicial response will be obtained by a finite-
difference calculation. 

Since the function e(t) can be represented by the identity 

e ( / ) - [ ' - $ - I e(to)dt0 + e(0)e(t), (4) 
Jo dt l'-'o 

we can obtain by superposition the solution 

de 
u(t) -i: dt ' - ' 0 

ue(to)dt0 + e(0)uAt). (5) 

This type of convolution integral is known as Duhamel's 
integral [6]. We shall find that constructing a solution by 
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Fig. 1(a) Indicial strained coordinates x1 (() 
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Fig. 1(b) Convolved strained coordinates x(t) 

Fig. 1 

means of these convolution integrals represents a very sub
stantial savings of computation time over a finite-difference 
calculation. 

We have written a computer code, CONVOL, to construct 
unsteady solutions of the TSD equaion via Duhamel's integral 
in strained coordinates. The details of this program follow. 
For a fuller analysis, see Nixon [5]. 

2.1 Computational Aspects of the Problem: Steady 
Solution. Before we can apply the indicial method, we need 
the results of two calculations, namely (1) a time-independent 
(steady-state) solution about which to perturb, and (2) a time-
dependent (unsteady) solution of the TSD equation for an 
indicial (step) change in the perturbation parameter (e.g., 
angle of attack). 

In the present work, the finite-difference code LTRAN2 [1] 
was used to solve for the steady and indicial upper surface 
pressures. Lower surface pressures are, of course, handled the 
same way. We shall denote the upper surface-pressure 
coefficient as Cp(x'), where x' is the physical coordinate 
scaled to the airfoil chord. The pressure coefficient is here 
defined as Cp(x') = -252/3u0(x'), where u0(x') = 
d4>(x')/dx' is the velocity and <f> is the velocity potential. Note 
that the physical coordinate x' does not depend on time. 

We may easily obtain the shock position from any Cp 

distribution, so long as there is a single shock only (which is 
true for all cases considered here). We merely interpolate the 
curve to find the point where Cp reaches its critical value Cp 

and dCp/dx' is positive. We shall denote the steady shock 
position as x& • 

2.2 Indicial Response Function. We also use the finite-
difference code LTRAN2 to generate the indicial responses we 
need. A restriction on the applicability of our results comes 
from the choice of the low frequency TSD equation (1). Here, 
and in LTRAN2 as well, we should restrict our consideration 
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to cases where k is less than about 0.2 (see [7]). Similarly, the 
ranges of the perturbation parameters for which the indicated 
method is here applied cannot exceed the ranges over which 
LTRAN2 is valid. Of course, these restrictions are not 
inherent in the indicial method itself, but rather in the 
equations and numerical schemes whereby we generate the 
indicial response function. 

3 The Convolution Code CONVOL 

First, we need to obtain the indicial response 5xst (t) for the 
shock motion and Cp (x

[, t) for the pressures, where x1 is a 
strained coordinate, defined in the following, chosen so that 
the indicial shock position remains fixed. 

To find the indicial shock excursion bxst{t) we merely 
repeat the shock-finding algorithm which we used to find the 
steady shock location, and subtract the steady shock position, 
thus 

6xst(t)=xs'(t)-x'ss (6) 

Now we compute, for each iteration, strained coordinates 
xl (t) according to the prescription 

0.2 0,1 

Fig. 2(b) Near aftmost shock position 

Fig. 2 Comparison ot CONVOL and LTRAN2 unsteady upper surface 
nreQGiiraQ 

must be chosen so as to include the full range of the shock 
motion; it is usually best to choose them as the coordinates of 
the leading and trailing edges of the airfoil (xL = 0 and 
xR = 1), respectively. The relation between the "indicial" 
strained coordinates xx and the physical coordinates x' for a 
typical value of 8xst (t) is shown in Fig. 1(a). Note that Nixon 
[5] uses a parabolic straining function instead of the piecewise 
linear one used here. However, Nixon [8] has shown that the 
method is insensitive to the particular straining chosen. 

The next step is to interpolate the unsteady Cp distribution 
obtained from LTRAN2 into these strained coordinates. We 
have found that quasi-Hermite piecewise polynomials are 
superior to cubic spline functions for our purposes, because 
they allow the second derivative of the interpolating curve to 
be discontinuous in the region of the shock. Cubic splines, by 
enforcing continuity of the second derivative, induce an 
artificial "wiggle" in the curve. 

Having interpolated the unsteady Cp 's , we subtract the 
steady pressure, in physical coordinates, corrected for the 
shock motion, obtaining thereby the indicial response for Cp: 

xl(t)=x'+5xs(t)f(x') (7) 
CPi{x\t) =Cp(.x\t) -C {x')[\-f (x')bxsl{t)\ (9) 

Here , / (* ' ) is a piecewise linear straining function given by 

~(x'-xL)/(xss-xL) xL-&x'<x'ss 

SXR~X')/(XR-XSS) Xss<:X'<XR 

The straining function vanishes outside the fixed points xL 

and xR, which are the boundaries of the strained region. They 

f(x')- (8) 

Here, / ' (x') is just the derivative of the straining function 
defined in equation (8) and is piecewise constant. 

3.1 Convolution Integrals. The total shock displacement 
due to any arbitrary schedule of the perturbation parameter as 
a function of time, e ( 0 , can be written in terms of Duhamel's 
integral as follows: 
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Fig. 3 Unsteady pressures due to motion of 0.75 chord flap 

6 * , ( O = f i x I t ( O e ( 0 ) + j o & r S e ( T ) e'(t-T)dr (10) where 

, ( * • ) (0) &rj*> (t) + [' ^-ew (t-r) 6*j*> (T)dr (13) 
£ JO AT l A similar convolution integral is computed for Cp, but we 

must also account for the (convolved) shock motion and 
express the answer in convolved strained coordinates which Of course, ew (t) is just the schedule of the kth perturbation, 
are given by N o t e t n a t n o summation is implied by the repeated indices in 

' J - X it\f( "i ( i n equation(13). 
x-x +oxs(t)j(x ) (i i) A s j m i i a r formula obtains for the pressure coefficients, 

(see Fig. 1(b)). The straining function used here is the same as namely 
that used before (equation (8)). However, the total shock 
displacement computed in equation (10) replaces the indicial 
shock displacement used in equation (7). 

Thus, we obtain for the total unsteady pressure due to the 
time-dependent perturbation e(t) the expression (compare 
Nixon [4], equation (13)): 

Cp(x,t)=CPe(x',t)e(0) + ^gCPe(x',t)e'(t-T)dT 

+ CPQ (x')[l-5xAt)f'(x')] (12) 

3.2 Multiparameter Convolution. It is simple and 
straightforward to generalize this method to two or more 
independent modes of perturbation. We start with a steady-

Cp(x,t)= D [Cj» (x',t)e^(0)+ J Q - e < * > (t-r) 

+cP0(x')\i-r (x'^&xP (o] 
L k J 

The convolved coordinate is here given by 

x=x'+f'(x')J^8x^) 

k 

4 Results 

Cj» (T)dr] 

(14) 

(15) 

Results of running CONVOL were compared to finite-. , „ . . . . , ~ i L-\ , i x t a u i w u i i m i n i n g v v i i y v j ' ^ w ^ i v ̂ u i i i p a i ^ u LU l m i i i . -
state solution and set of mdicial responses 5^<> and d i f f e rence (LTRAN2) calculations for two, single-parameter 
Cp <*> (x' <*' ,0 ^for each mode (here the ^ . J h e n the total o s c i l l a t o r y c a s e s a n d o n e > t w o . p a r a m e t e r c a s e , a s well as a 

transient disturbance of Gaussian shape. convolved shock excursion is the sum over the modes 

Case 1: NACA 64A410 airfoil at M„ = 0.74 oscillating in 
angle of attack with amplitude 1.25 deg and reduced 
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frequency k = 0.2. The steady-state solution and solution for 
1/4 deg indicial motion were stored on tape. Looking first at 
the oscillatory motion we found good agreement, both in the 
amplitude and phase of the shock motion, between CONVOL 
and LTRAN2. We then chose two cases for pressure plots, 
one near the forwardmost shock position (Fig. 2(a)) and one 
near the aftmost shock position (Fig. 2(b)). The angle </> in the 
figures is the phase wt of the current cycle of angle of attack 
motion. Generally, the agreement is excellent, especially 
considering the large (25 percent chord) shock motion. Note 
that the dashed line represents the steady shock position. 
There is some discrepancy near the foot of the shock 
(resulting in a different shock strength) but this appears 
traceable to the error introduced by capturing, rather than 
fitting, the shock. 

Case 2: NACA 64A006 airfoil with 0.75 chord trailing 
edge flap, M„ = 0.875. Flap oscillation with amplitude 1.25 
deg and reduced frequency (based on chord) k = 0.2. The 
indicial response for a 1/4 deg flap motion was calculated 
along with the steady-state solution. Once again, there is 
excellent agreement in both shock position (Fig. 5) and upper 
surface-pressure coefficients near the maximum and 
minimum shock positions (Figs. 3(a) and (b), respectively). 

NACA 64A006 airfoil with a 0.75 chord flap undergoes 
simultaneous oscillations in angle of attack and flap motion. 
The reduced frequency is k = 0.2, and the free-stream Mach 
number is 0.875. 

We ran several combinations of pitching and flap motions, 
a few of which are noted in Fig. 4. Note that the shock 
motions are indeed superimposable; this has been confirmed 
by conparison with LTRAN2. Figure 4 illustrates this point 
for the cases of («) a pitching oscillation of amplitude 1 deg, 
(b) a flap motion of amplitude 1.25 deg, (c) pitching and flap 
motion in phase (shock excusion amplitudes add), and (d) 
pitching and flap motion out of phase (shock excursions 
cancel out). 

In the out-of-phase case, we see that the two motions, 
which separately account for a shock excursion of about 18 
percent chord each, can be cancelled so as to restrict the shock 
motion to within less than 1.5 percent of chord. This can
cellation also applies to the Cp distribution as shown in Fig. 5, 
where it is also verified by a corresponding run of LTRAN2. 
It should be noted that the required magnitude and phase lag 
of the flap motion, relative to the angle of attack motion, to 
remove the shock oscillation of the pitching airfoil are given 
by a simple algebraic equation. 

Case 3: Two-parameter perturbation. In this case, a Case 4: A transient disturbance. In order to demonstrate 
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Fig. 6 Motion of the upper surface shock in response to a transient 
disturbance in angle of attack. 
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the capabilities of CONVOL for transient as well as 
oscillatory small disturbances, we applied the indicial method 
to the case of angle-of-attack variation according to the 
schedule: 

a(t)=l deg. exp[-(/-27r)2/27r2], ?>0 

for a NACA 64A006 airfoil, M„ = 0.875. A comparison of 
the shock motions computed by LTRAN2 and CONVOL is 
given in Fig. 6. Note that the indicial response of this airfoil 
seems to have two predominant components, a decaying 
exponential with time scale of about three cycles, and a 
decaying exponential with a time scale about 10 times longer. 

4.1 Savings in Computing Time. CONVOL requires a 
steady-state solution and an unsteady indicial response. For a 
fine grid solution, LTRAN2 requires approximately 350 sec of 
CPU time on the CDC 7600 computer to produce these. With 
these data on hand, CONVOL requires about 4 sec of time for 
the various interpolation steps and about 0.25 sec for each Cp 

distribution per time and frequency. By comparison, 
LTRAN2 requires 3-4 sec of time for each Cp per time and 
frequency. 

Hence, using CONVOL can result in a very substantial 
savings in computation time, particularly if a range of 

. frequencies are to be run. In fact, the pressure distributions 
for about 10 frequencies can be computed in the time that 
LTRAN2 requires for one. 

In the case of multiparameter perturbations, the potential 
for savings is even greater, since an entire ^-parameter space 
of solutions can be run for little more than the time required 
for(w + 1) finite-difference calculations. 

The indicial method is also immediately generalizable to 
three dimensions. The only new problem concerns the more 
complicated straining of coordinates, but such methods have 
already been worked out [8] and present no new difficulties of 
principle. 

The multiparameter capability, together with the reduced 
computation times, opens up the possibility for using 
CONVOL to fit the aerodynamic response to the structural 
model in a combined program. This "tailoring" capability 
ought to be of particular value in the development of active 
control technology for aircraft. 

It is probably worth repeating that the indicial method is 
very general in its applicability, since it will work for any 
schedule of parameter changes to any flow field equation, 
providing that it is locally linearizable by freezing the 
discontinuities in appropriately strained coordinates. 

Two additional studies of interest which relate to this one 
are those of Yang et al. [9] who have done a flutter analysis of 
the NACA 64A006 airfoil using finite differences, and of 
Guruswamy [10] who has used the strained coordinate 
technique to generate steady solutions that are then used as 
initial conditions in a calculation of transrail divergence 
speeds. 

The work was sponsored by the Air Force Office of 
Scientific Research under Contract No. F49620-79-C-0054. 
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Torque on Eccentric Spheres 
H.Tdzeren F l O W i n O M T U b O S 

Department of Engineering Sciences, * * 
Middle East Technical University, The steady flow of an eccentric sphere in a circular cylindrical tube filled with 

Ankara, Turkey viscous fluid is considered as a regular perturbation of the axisymmetric problem. A 
sequence of boundary value problems are formulated involving Stokes equations 
and some linear boundary conditions. Solution of the first-order problem yields the 
leading term in the perturbation series of the torque on the sphere. 

1 Introduction 

This paper presents a perturbation solution for the off-axis 
motion of a sphere of arbitrary size translating and rotating in 
a circular cylinder in the limit where the eccentricity of the 
sphere is small. Previous off-axis solutions have been 
presented for two limiting flow geometries: (/) Happel and 
Brenner [4] considered the case where the sphere diameter was 
very small compared to the tube diameter but the eccentricity 
was arbitrary. (//') The flow of eccentric, closely fitting 
spheres is treated by Bungay and Brenner [1] by using singular 
perturbation techniques. The solution by Happel and Brenner 
[4] was based on the method of reflections which requires the 
particle to be small and far removed from the boundaries if 
the solution is to converge after a few terms. The present 
solution is based on the boundary collocation technique 
described in [5] which is applicable in a wide range of particle-
to-tube diameter ratios. 

The flow of a spherical particle placed slightly off axis is 
treated herein as a perturbation of the axisymmetric flow of a 
sphere in a tube. Assuming regular perturbation expansions 
for velocities and pressure in terms of the eccentricity e, as e 
approaches zero, a sequence of boundary value problems are 
obtained involving Stokes equations and some linear 
boundary conditions. The zero-order perturbation solution is 
the exact solution for the motion of a sphere along the axis of 
a circular cylinder. This solution is given for a single sphere in 
Haberman and Sayre [3] and also in Leichtberg et al. [5] as a 
special case of the more general problem of the flow past a 
finite coaxial array of spheres. The first-order solution for a 
particle translating and rotating is obtained herein using the 
results of [5]. This solution gives the leading term in the 
perturbation expansion of the torque on the particle, but 
yields no information about the drag on the particle and the 
pressure drop. Higher order solutions are required to evaluate 
the corrections to zero-order terms in these variables. 

The perturbation scheme and the solutions for the first-
order fields are given in Section 2. The numerical results are 
presented and compared with the results of [1], [4], and [5] in 
Section 3. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the 
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Fig. 1 The flow of an eccentric sphere in a tube 

2 Formulation 

Consider the slow, steady motion of a sphere placed ec
centrically in a circular cylindrical tube filled with viscous 
fluid. The radius of the sphere is taken to be equal to a, the 
tube radius b and the distance between the sphere center and 
the tube axis is equal to e b where e is small compared to unity. 
A coordinate system stationary relative to the cylinder is 
introduced taking the sphere center as the origin of coor
dinates as shown in Fig. 1. With respect to this coordinate 
system, the particle translates parallel to the tube axis with 
velocity U, rotates in x — z plane with an angular velocity e Q 
and the viscous fluid flows with an average velocity V/2. 

The velocities and pressure are treated as a regular per
turbation of the axisymmetric problem 

CO CO 

u = ^ u ( n ) e "andp= E ^ 1 " ' 6 " ' < 2 J ) 
«=o • «=o 

where each field uw andp ( ' ! ) satisfies the Stokes equations 
and equation of continuity 

v2u<"» = V p " " , V'U<")=0. (2.2) 

The boundary conditions are 

u = /7k + e0tfjxe,. at r = a, u = 0 at R'=b, 

u=v(\- - r r ) k at z = ± o o , (2.3) 

where j , k, and e r are unit vectors in y, z, and /-directions. The 
relation between R' and R in Fig. 1 (the radial coordinates 
with respect to the cylinder axis and the z -ax is passing 
through the center of the sphere) is obtained by applying the 
law of cosines 
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R'2=R2-2Rbecos(t> + b2 e2. (2.4) 

The equation of the circular cylindrical surface R' = b is 
then 

R = b(l+ecoscj>) + 0(e2), as e - 0. (2.5) 

Substituting equations (2.1) and (2.4) into equation (2.3), 
the boundary conditions for zero and first-order velocity 
fields on the particle and at infinity are obtained: 

u(0) = t /k, u(1) = Q a j x e r at r = a, 

1 r ) k , u<»=2K-cos(/>k at z = ± o o . (2.6) 
bl / b 

(0) + e u (i) Expanding the no-slip condition, u = u 
0, in Taylor series about R = b and computing the terms at 
the cylindrical surface R = b(\ + £Cos<£) 

u<°»=0, u<»: 
du<°> 

bcostb at R = b. 
dR 

(2.7) 

The zero-order per turba t ion solut ion is the exact solution 
for the mot ion of a sphere along the axis of a circular 
cylinder. This solution which satisfies the boundary con
ditions (2.6) and (2.7) (for zero-order fields) is extensively 
obtained by Leichtberg et al. [5] as a special case of the more 
general problem of the flow of an array of concentric spheres 
in a tube. In the remainder of this section, the first-order 
solution is developed using the results of [5]. 

The solut ion u(1) is found by superposi t ion of two 
solut ions: (f) the solution v of Stokes equat ions which 
satisfies condit ions on the tube but not on the sphere 

du<°> R 
v = - b cos0 -—- at R = b, v = 2 V - cos <A k at z = ± oo 

dR b 
(2.8) 

and (//) the solution w, which satisfies no-slip condition on 
the tube 

w = 0 at R = b, w = 0 at z = ± o o , 

w= - \ + Ua'jXer at r = a. (2.9) 

In the following, all variables having dimensions of length 
are made dimensionless with respect to the tube diameter b. 

The velocity field v is found as follows: using 

du <0) 

« J , (0)=M (0) = ^ £ _ = 0 at R=l, z dz 

the continuity equation gives 

^"K(( , , „ 

and therefore 

vR=v<> = Q, vz 

dR 

du <°> 
- c o s < / > — ~ at R = 1. (2.10) 

The H<0' is given by Leichtberg et al. [5] as 

«<"> = K(l -R2)+[ 
Jo 

{A(t)tI0(Rt) + 

B(t) (RtIl(Rt) + 2I0(Rt))} cosztdt + 

f ] (C„ />„ ( / . ) / - " - '+ D„ {P„(ri + 2F„(ri)r-" + l} (2.11) 

where P„ (n) and F„ (/*) are Legendre and Gegenbauer func
tions with argument fi = cos 6. The coefficients C„ and D„ 
and the functions A(t) and B{t) are calculated and used as 
defined in [5]. (Numerical accuracy is discussed and compared 
with the results of Leichtberg et al. [5] and Wang and Skalak 
[6] in Section 3.) Differentiating equation (2.11) 

dR 
2RV+ E j c ^ ^ (/*)/-"-•) 

n = 2 

d 
+ D„-((Pn+2F„(fi))r-" + l)}) 

• i ; + j o | /
2 / , ( W ) y l ( / ) + (JR/2I0(i?/) 

+ 2tIl(Rt))}cosztdt. (2.12) 

At R = 1, equation (2.12) can be written as an inverse 
Fourier cosine transform 

dR 
+ 2V 

2 f° 
•w Jo 

F(t) cosztdt at R = 1, 

1 
^ ( 0 = D ( - D"/2 - r I cn (t" + ,K0 (t) +t" A", ( / ) ) 

~D„ ((n2 - 3n + 3) /"" ' K0(t) - (2/7 - 3)/" A", (O 

+ ( « - 2 ) ( « - 3 ) / " - 2 A - , ( 0 ) l 

7T 

y + — \t2Il(t)A(t) + {t2I0U)+2tIl(t))B(t)} (2.13) 

where K0, Ku and 70, / , are Macdonald and modified Bessel 
functions of zero and first orders. 

Substituting (2.13) into (2.10) and using equation (7-3.51) 
of Happel and Brenner [4] the v is found as 

0 

0 

2R Kcos0 

[ /(/?,f)] [ /- '(U)] 0 
2 

F(t) 

co&4>s\nzt 

>sm<j>sinzt dt 

cos<l>coszt 

(2.14) 

After carrying out the matrix multiplication, the terms found 
in each row are multiplied with <j> and z dependent functions in 
the same row. The matrix [I(RJ)] is given by Happel and 
Brenner [4] for the term proportional to cos <j> in the Fourier 
series as 

u(R,m 
Ix(Rt)/{Rt), I[{Rt), RtI'{(Rt) 

-I'dRi), ~ / , (RtymJi (Rt)/(Rt)-I[(Rt) 

0, It(Rt), Ii(Rt) + tRI'i(Rt) 

(2.15) 

The v defined in equation (2.14) satisfies Stokes equations and 
boundary conditions (2.10). This can be verified directly by 
substituting R = 1 in (2.14) and comparing with equation 
(2.13). 

Having obtained the solution v, it is now required to find w 
which satisfies boundary conditions (2.9). The solution 
consists of (/) the solution of Stokes equations in spherical 
coordinates, which are used to satisfy the conditions on the 
particle, and (if) the solution in cylindrical coordinates 
chosen to satisfy the no-slip condition on the tube surface. 

The series solution in spherical coordinates proportional to 
cos</> (or sin^) is 

cos</> S[a"^Ti)(BP ' n+1 + (« + i).p,U,) 
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+ \bn(r~"-*Pl^-n(n+l)r->-*Pn + {) = ( - ^ V_ «*-> ( „ _ 2 ) , - A r 2 ( 0 
( « - 1 ) ! L 2 

1 T ( « - 2 ) 

( n - D ! 

c„ ( / i -2 ) 
AK2^7)"r~4^' ^ " + 1 + " ' * o ( / ) ! ~ * " ' " * l ( 0 + 2 « ( 2 « - l ) 

n(n + l)i3
n + i) + (« + l)^/--"-1.P, 

• (n-2)( /?- l ) /" - 2 A-,( / ) 

w0 = sin<? 
n = 

+ (2n - l ) f " ' ^ 0 ( O )]sin</>, 

(nPf, + 2+(n + 3)Pl~n(n + lKn + 2)P„+2 + b r+iK (t) , C" \ {""l)i"2+2) r^K.U) 
-, i 2 I «(2n - 1 ) 

- «(« + l)2P„) 6 / - - " - ' p 1 

* " "/sr 0(o)lcos^>n = 2,4, 6, . . . (2.19) 

-I- c ^-" + 1 p ' j ) Table 1 Tests of convergence for zero-order perturbation 
2nR(2n - 1 ) J solutions for various diameter ratios alb 

't{-a„r-"->P!,~b„nr-"-2Pl, + l cos 
fl = l 

L 2(2rt + 1) 

( « + l ) ) - r i T ' - " J P , , , - i l ] - (2.16) 
77+1) J J 

alb 

0.2 

0.4 

0.6 

Number of 
collocation 
points 

11 
15 
19 
11 
15 
19 
11 
15 
19 

x<t/> 

1.6796 
1.6796 
1.6796 
3.5927 
3.5926 
3.5926 

11.108 
11.109 
11.109 

«(2n-l ) (2« + l) 

Due to the symmetry about the x—y plane, the wz contains 
the components involving P'IXy) even in n and the w0 and wR 

involve odd terms. Therefore, a,, = Oif/j = even and b„ = c„ , , , ,.. ,~, l n , ., c ,, 
n .„ J J T u . • • *• i-> MI\ *• In developing equation (2.19), the following equations 

n , ° , n " f=
H , °H p m m S T ^ } i ^ / n 1 1 obtained from equations (8.77.5) and (6.69.4) of Gradstein 

(3.2.31) of Happel and Brenner [4] and the following a n d R v h z i k n i are used 
equations involving a solid spherical harmonic x = f (" + 1) P\ 
(fi) cos0 are extensively used: 

_ l = _ n r — 2 p . + l ( / l ) i ^ 

2 2 ( - n 2 r °° 
gY 1 = — \ t"K,„(t) cosztdt , m + n = even, 
— - -r^-"-2j32 + | -n(n + i)r~"-2Pn + l]cos* « ' ^ u-iH-wrt! Jo 

(n - m + 1)P;;'+,+(« + /??) P™_, 

= - [ / - " " - 2 P 2
 + l - « ( « + l ) / - " - 2 P „ + 1]cos0, (2.17) v(n-m) 

oK Z 

M^"(/*)= 
2« + l ' ? c - n 2 f °° 

^ — ^ f"#„,(0 sinztcff, m + n = odd (2.20) 
•win — m)\ j 0 

The following solution in cylindrical coordinates used in w(n-iri) 
addition to the solution in spherical coordinates (2.16) 
satisfies the no-slip condition on the tube surface: r2r~ (" + ' ' P " ' ^ ) 

m + n 
2 

w= - | \'[HR.n][/-'(i.o](f w"(oi) S S * . (2.i8) = 2 ^ r ^ r J0"{-(«-«-ix«-«) /"-2*„<o 
cos zt 

+ (2n-l)t"-'Km_1(t)\cosztdt,m + n = even, 

where the elements of [A" (t)] = [A'{, An
2, A\\T are the >H±!lz± 

Fourier cosine (or sine) transforms of wR, w^, and wz in = 2 ( - l ) 2 f ™. _<n_m _ n ( w _ m \ /"-2/s: (/) 
(2.16). W n - m M Jo '" (2-16). ir(n-my. 

( -1 )" / 2 r 
^ " ( 0 = ( w _ 1 ) ! [ g „ - i ( » - l ) [ - ( « - 2 ) r " - 2 / ? , ( ? ) + ( 2 « - l ) / " - | / r , „ _ , ( 0 ) s i n z / r f / , w + « = odd, (2.21) 

£ where computed for R = 1, the r is a function of z alone. 
+ t" -' K0 ( 0 ) - -— {/" + ' K2 (/) +1" + ' /T0 (/)) The collocation method is used to determine the unknown 

coefficients a„, bn, and c„ by applying the boundary con-
c r ( « - 2 ) 2 ( « - l ) ditions on the particle (2.9) to the summation of the solutions 

+ ,- " . I - t"~'K2(t)
 i n spherical coordinates (2.16) and in cylindrical coordinates 

( > 4/? (2.18). How to use these coefficients to compute important 
_ . . variables such as drag and the torque on the particles and the 

+ n'~ f'K, (t) — — tn~^Ka(t)\Icosri) accuracy of the numerical calculations are discussed in 
2 4 J J Sfintinn 3 
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Table 2 Comparison of additional drag coefficients \(V) and \m with results of Leichtberg 
et al. [5] and Wang and Skalak [6] 

alb 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

Leichtberg et al. 
X(U) 

1.263 
1.680 
2.373 
3.599 
5.973 

11.20 
25.29 

A"7 ' 

1.255 
1.636 
2.231 
3.223 
5.017 
8.696 

17.91 

Wang and Skalak 

X(t/) x m 

1.263 1.255 
1.680 1.635 
2.370 2.229 
3.593 3.216 
5.949 4.996 

11.10 8.617 
24.70 17.49 

X<"> 

1.263 
1.680 
2.371 
3.593 
5.952 

11.11 
24.77 

X ( K ) 

1.255 
1.635 
2.229 
3.216 
4.999 
8.627 

17.54 

Table 3 Tests of convergence of first-order perturbation 
solutions for various diameter ratios alb 

alb 

0.2 

0.4 

0.6 

Number of collocation 
points 

11 
15 
19 
11 
15 
19 
11 
15 
19 

« i 

- .003302 
- .003303 
- .003303 
-.09817 
-.09819 
-.09819 
-1.258 
-1.260 
-1.260 

3 Results and Discussion 
Numerical tests are performed to determine the accuracy of 

C„, D„ and a„, b„, c„ coefficients computed by the boundary 
collocation procedure. The C„, D„ coefficients giving the 
zero-order solution are previously determined (but not 
tabulated) by Leichtberg et al. [5]. In the present com
putations their results are extensively used: The angle 6 is 
taken as 0.8 deg and 15 collocation points are chosen 
uniformly distributed along the semicircle. The tests for 
convergence given in Table 1 show that by using 15 
collocation points five significant figures in X<(/) are obtained 
for alb values between 0.001-0.6. A comparison of the 
present results with that of Leichtberg et al. [5] and Wang and 
Skalak [6] are given in Table 2. The quantities compared in 
the table, \{U) and X ( | / ' , are the coefficients of additional 
drag for U ^ 0, V = 0 and U = 0, V ^ 0 cases, respectively. 
There is a small but increasing difference (with increasing 
alb) between the present results and the results of [5]. But the 
agreement is good between the present results and that of 
Wang and Skalak [6] as can be seen from the table. (The 
Wang and Skalak [6] solutions are presented for infinite 
chains of spheres uniformly distributed along the axis and the 
numerical results given in Table 1 are for the largest spacing 
of 40 tube radii.) Same collocation points as zero-order 
solution are used for the calculation of a„, b„, and c„ coef
ficients of the first-order perturbation solution. The accuracy 
of these calculations are discussed later in this section. 

In the series solution of Stokes equations in spherical 
coordinates as given in [4], the only term that contributes to 
the drag on the particle is the solid spherical harmonic p _2 • I

n 

the first-order solution subject to the boundary conditions 
(2.8), the surface spherical harmonic inp__2 is necessarily of 
the form />,' (n) cos </>. However, the velocity components 
derived from such a term violates the symmetry requirements 
mentioned in Section 2, and therefore its coefficient C] in 
equation (2.16) must be zero. 

A simple relation is also available to calculate the torque on 
the particle as given in [4] 

T=-8 i r / *v (r>X-.2). (3.1) 

In contrast top_2 harmonic, the solid spherical harmonic x-i 
= ax r~2 P'(IJ.) sin$ is present in the series (2.16) and yields a 
torque on the sphere 

T = 87r/i/j2a,ej (3.2) 

where fi is the viscosity of the fluid and e is as defined in 
Section 2. The torque T given by (3.2) is the leading term in 
the perturbation expansion of the torque on the particle 
exerted by the fluid. 

The coefficients a„, b„, and c„ in (2.16) are determined in 
three cases: (/) a sphere moving steadily in a tube through a 
viscous fluid that is at rest at infinity (U j± 0, Q = 0, V = 0), 
(//') steady flow of fluid past a stationary sphere (U = 0, V ^ 
0, fi = 0), and (Hi) pure rotation of the sphere (Q # 0, U = V 
= 0). 

Tests are performed to determine the rate of convergence of 
solutions as a function of number of collocation points used. 
Table 3 gives the coefficient at for different alb values and 
numbers of collocation points. Up to alb = 0.6, four 
significant figures are obtained by using 15 points uniformly 
distributed along the semicircle. 

In cases (/) and (ii) mentioned in the preceeding paragraph, 
the torque is due to the eccentricity of the sphere. However, in 
the case of rotating sphere, the leading term is the solution for 
a concentric sphere rotating in an otherwise quiescent fluid in 
a tube. The values of the coefficient «j is computed for all 
these three cases for various alb values and tabulated in Table 
4 as Au, Av, Aa coefficients. The torque in more general 
cases can be calculated using 

T=%-Kiib1}(AuU+AvV+bAaQ)e (3.3) 

The results of the present treatment may be compared with 
the results of the work by Happel and Brenner [4] when alb is 
small and that of Bungay and Brenner [1] when alb ap
proaches unity. The torque T is given by Happel and Brenner 
[4] as 

T=i8-Klxa2[V(a/b)e+ { V(\ - e 2 ) - U]g(e) (alb)2] 

as alb - 0, (3.4) 

where the function g(e) is approximately 1.296e + 0(e3), as e 
tends to zero. The result A u = 1.299 for alb = 0.001 given in 
Table 4 is in fairly good agreement with this value and the 
discrepancy in the fourth digit is partly due to the omission of 
the terms of order (alb)1 in equation (3.5). 

Bungay and Brenner [1] determined the drag and the torque 
on closely fitting spheres using singular perturbation 
techniques. The range of (alb) considered in the present paper 
is probably out of the range of application of their work [I]. 
Still, there is a fair comparison between these results for 
larger values of (a/b). Equations (3.6), (4.67), and (6.9) of 
Bungay and Brenner [1] give Av = 1.377, Av = 1.308 for 
alb = 0.6; a n d ^ 0 = 4.85, A v = 3.792 for alb = 0.7. The 
corresponding values given in Table 4 are 1.26, 1.207, 4.689, 
and 3.637. 

The series solutions for zero and first-order velocity fields 
were particularly simple involving axisymmetric terms for 
zero-order fields and terms proportional to cos </> (or sin$) for 
first-order fields. The higher order solutions require the 
consideration of all surface harmonics of corresponding order 
due to the boundary conditions on the tube. This complicates 
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Table 4 The coefficients Au,Ay,An for several different values of diameter ratio alb 

alb 
0.001 
0.01 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

- 1 . 2 9 9 x l 0 ~ 1 2 

-1 .324X10" 8 

-1 .615X10~ 4 

- 3 . 3 0 3 X 1 0 ~ 3 

- 2 . 2 1 9 X 1 0 - 2 

- 9 . 8 1 9 X 1 0 - 2 

- 3 . 6 0 7 x 1 0 - ' 
-1.260 
-4.689 

Ay 

1.0013x10- ' 
1.0132X10-6 

1.160X10-3 

1.122X10-2 

4.799x10-2 
1.527x10- ' 
4 .318x10- ' 
1.207 
3.637 

f_n 
-1.10 9 

-1.000001 x 10-6 

-1.00074 x 10 ~3 

-0.0080473 
-0.02755 
-0.06722 
-0.1381 
-0.2592 
-0.4703 

the formulation and increases the amount of the com
putational work considerably. However, the higher order 
corrections to the drag are relatively easier to obtain, knowing 
that on lyp_ 2 harmonic contributes to the drag. Among the 
surface harmonics in /?_2> P\(f) is the only term to be con
sidered since the other harmonic Pi (n) cos0 violates the 
symmetry requirements. Therefore, the higher order terms in 
the drag can be calculated by solving a series of axisymmetric 
problems which involve prescribed velocities on the tube 
(various derivatives of lower order velocity fields with respect 
to R). Currently, the work is in progress to extend the present 
analysis to second and third-order perturbation solutions. 
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The Growth of Localized 
Disturbances in Unstable Flows 
The development of three-dimensional localized disturbances in unstable flows was 
recently studied by Craik [1] using a model dispersion relation. The adoption of 
such an approximate formula for the linear dispersion relation allows a dramatic 
reduction in computational effort, in comparison with more precise calculations 
(e.g., Gaster [3], [5]), yet may still yield quite accurate results. Craik [1] gives 

simple analytical solutions for various limiting cases of his chosen model. Here, this 
model is further investigated. Numerical results are given which are free of previous 
scaling assumptions and the accuracy of the proposed model is assessed by com
parison with known exact computations for plane Poiseuille flow. Certain im
provements are made by including further terms in the model dispersion relation 
and the influence of these additional terms is determined. A further model is in
vestigated which yields "splitting" of the wave packet into two regions of greatest 
amplitude, one on either side of the axis of symmetry. Such behavior may be 
characteristic of many flows at sufficiently large Reynolds numbers. Extension of 
this work to three-dimensional and slowly varying flows seems a practical 
possibility. 

1 Introduction 

Precise calculation of the evolution of an initially localized 
disturbance in unstable flows is an exceedingly laborious task. 
For the Blasius boundary layer, Gaster [3] admirably per
formed this task and found good agreement with the ex
periments of Gaster and Grant [2] throughout the early stages 
of growth. Gaster's solution consisted of a superposition of 
many wave modes, each with its characteristic (real) 
frequency and spatial growth or decay rate, as determined by 
the eigenvalues of a reduced Orr-Sommerfeld problem. 

An alternative approach, based on an asymptotic saddle-
point analysis, is known to give accurate results for all but 
very small times after initiation of the disturbance (Gaster 
[5]). However, the computational effort required to locate the 
saddle points in the complex frequency/wave-number planes 
is very great, if one seeks to work with the precise eigenvalues. 
Indeed, Gaster [5] does so only for two-dimensional 
disturbances, and the complexity of the three-dimensional 
problem is much greater. Two-dimensional packets are also 
considered by Itoh [8], who attempts to extend the method of 
ray trajectories to dissipative flows. 

An alternative and much simpler procedure, described by 
Craik [1], may yield satisfactory approximations, though with 
some loss of accuracy. The essential simplifying feature is the 
adoption of an algebraic formula for the complex dispersion 
relation, which by suitable choice of parameters, fits quite 
closely to the exact dispersion relation for all the unstable 
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modes of the system. The application of the saddle-point 
method to this model dispersion relation readily yields the 
desired solution. 

In Craik [1], hereafter denoted by Part 1, a model 
dispersion relation 

o) = cost?[oj0 + a | (7 - CY0) - ia2 (y - a0)
2 

+ i8(l-Rc/Rcosd)] (1.1) 

was employed to investigate the linear evolution of localized 
three-dimensional disturbances in unstable flows. Such a 
disturbance is assumed to have the form 

lK*,0 = •u: }J/{a,l3;y)expi(otx + (iz - o>t)dadP 

characteristic of primary flows u = (U(y),0,0) where w = 
co(a,|6), a = 7Cost? and /3 = 7sint9. Thus, the wave-number 
vector of each Fourier component has magnitude y and 
direction d relative to the downstream x-axis and maximum 
temporal amplification occurs when (7,1?) equals (a0>0)- Also, 
ai is a real constant, precisely equal to the downstream group 
velocity dw/da of the component (a0»0) when the Reynolds 
number R equals its critical value Rc for marginal stability. 
The constants a2 and 8 are complex with positive real parts a2r 

and 6r. The model dispersion relation (1.1) satisfies Squire's 
theorem and is assumed to hold for complex as well as real 
values of 7 and 6. 

Supposing that time /—c© while x/t and z/t remain fixed, 
saddle points of the respective a and /3 integrals yield the 
dominant contribution to ip(x,t). These saddle points are 
located at the complex values a = a*, P = (3* where 

5o) 

da 
x 
t 

dco 
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_ 0-04 

Fig. 1 Lines of constant phase from (2.7) with data as in (2.9). The 
dashed boundary denotes the extent of the growing disturbance when 
fl = 11,110. 

_ 0-04 

-0-08 -0-04 0 0-04 

Fig. 2 Lines of constant amplification from (2.8) with data as in (2.9). 
Also shown are the analytic solutions, Part 1 (3.6), Part 1 (5.5) for the 
neutral boundary at R = 6944 with data (2.9), corresponding to v = 
0.016. 

Correspondingly, these saddle points are situated at 7 = 7*, 0 
= 0* defined by 

•>2 

2{z/t) 

- ( 7 
X z \ 

+ — tan0* -2ia0a2) sin0*cos0* V t t 

4ia2(u0 + iS — a0a{ -iala2) 
+ 

( h — tan 6* -2ia0a2) 

(l.2a,b) 

(c.f. Part 1, equations (2.4), (2.5)) where X=x-axt denotes 
downstream distance measured from an origin moving with 
velocity a,. 

The saddle-point method yields the dominant contribution 

fh*,6*;y){*/t) 
\Kx,0 exptK(0*), 

/ 1 \ >/2 

(< — a1cosetKt„) 

K(6*) = cos6*\ -i'(co0-ai«0) + 6-a2
da2 

( — + y cos6>* - 2iaaa2J J - - ^ , 
1 / X 

4a2 

f(y*,0*;y) = y*t(y* cose*,y* sind* ;y) 
where K* m denotes cPK/de2 evaluated at 0 = 0*. 

(1.3) 

Of course, the model dispersion relation does not precisely 
represent any particular flow, but it incorporates qualitative 
features of many flows and considerable insight is gained 
from studying this simplified model. Furthermore, under 
certain circumstances, results using (1.1) may in fact give 
quantitatively accurate results (see Section 3). Other than 
adoption of the model (1.1) the only assumptions made in 
deducing (1.3) are that r— °° and 

Re{a2cos0*T*2)>O. (1.4) 

This last condition is necessary to ensure that the dominant 
contribution does, indeed, come from the saddle points, 
rather then the end point 7 = 0; and it is certain to be satisfied 
in all cases of practical interest. 

In Part 1, various remarkably simple, closed-form ap
proximate solutions were deduced for the wave packet, on 
making further assumptions regarding the relative 
magnitudes of the constants a)0,ao,«i,«2,5 and R/Rc, The 
purpose of the present paper is threefold. First, in Section 2, 
numerical results based on (1.3) are presented, which are free 
from the additional scaling assumptions used in Part 1. 
Second, in Section 3, the accuracy of the model dispersion 
relation is assessed by comparison with computed eigenvalues 
for plane Poiseuille flow, and the consequences of 
discrepancies are evaluated. Conditions are established under 
which the model calculation should yield accurate quan
titative results. Third, in Section 4, an alternative model is 
proposed which exhibits features qualitatively different from 
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Fig. 3 Comparison of model (1.1) (solid curves) and computed 
eigenvalues (dashed curves) for temporal instability of plane Poiseuille 
flow at B = 5780 and 10,000. Figures 3(a) and 3(b) show wr and wf, 
respectively, versus wave number a. 
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Fig. 4 Comparison of model (1.1) (solid curves) and computed 
eigenvalues (dashed curves) for spatial instability of plane Poiseuille 
flow at ft = 6000 and 10,000. Figures 4(a) and 4(b) show a, and a,, 
respectively, versus frequency u. 

those resulting from (1.1). This new model is relevant to and lines of constant temporal amplification rate a are 
certain flows at Reynolds numbers substantially above g R r c o s 0* 
critical, which have a maximum growth rate at some finite 
value R = Rt{>Rc). For this model, it is found that when 

+ Re V- -(A-V • ) ] - . . (2.4) 
R (- 4a2 

R>Rt the maximum amplitude may no longer occur on the x- On introducing the (complex) quantity t> = tan0* and writing 
axis; but, rather, two maxima may exist, one on either side of /* = 2a0«2, expressions for X/t and z/t are found from (2.1a) 
the center line z = 0. This "splitting" of the packet may be a to be 
general feature of many flows. 

2 Numerical Results 

On defining 

X 7 
<p = — + — tan0* - 2/a0fl2. 

A = 4a2(-/coo+/a0ai -ala2+&), 

results (1.2a,b) may be re-expressed as 

y* = i<p/2a2, sin20* = 4{z/t)<p(<P2 - A)- ' {2.1a,b) 

and the dominant exponential term of (1.3) becomes 

exptfr«n = e x p f [ - 5-f + ^ - ( A " * ' 2 ) ] - ( 2 - 2 ) 

Accordingly, lines of constant phase, for each /, are given to 
good approximation by 

COS0* 

X/t=<pr - ^ - {vr/Vi){<p, + nr) (2.5a) 

z/t = vr1{<Pi + iir) {2.5b) 

where subscripts r and i denote real and imaginary parts. 
Also, result (2. lb) may be written as 

G^)( — ^ ^ ^ <2.6) 
V 1 + tT / V <p ' V; 

a complex equation connecting the unknown complex v and <p 
which has a real right-hand side. Finally (2.3) and (2.4) may 
be expressed in terms of <p and v only as the two real equations 

f (A-<p2) ") 
Im =-rpr I = constant =p 

p f ( A ~ V ) 1 2 / «A\ , 

(2.7) 

(2.8) 

Im\ — (A-<p2J j = constant (2.3) 

This form is now suitable for computation, according to the 
following scheme. Starting values of <pr,<p,,vr and v, may be 
chosen as 

<pr = {X/t)0 + m, <p,= -iir, vr = Vi = 0, 
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corresponding to a specified point X/t = (X/t)0, z/t = 0 of the 
X/t-z/t plane. On altering <pr slightly, new values of <pit vr, 
and vi may be found by iterative solution of (2.6) and (2.7), or 
of (2.6) and (2.8), depending on whether lines of constant 
phase or constant amplification are sought. Corresponding 
values of X/t and z/t are then established from (2.5a,b). 
Continuing in this way, curves of constant phase or am
plification through the chosen starting point may be traced 
out. Note that the curves so obtained are independent of the 
Reynolds number R; but that, since Rc/R occurs on the right-
hand side of (2.8), the value of amplification (or damping) 
rate associated with a curve of constant amplification varies 
with R. The independence from R of these curves is of course 
a consequence of the particular model (1.1) and not a general 
feature of unstable wave packets. No convergence problems 
were encountered with the ad hoc iteration scheme adopted. 
The programs were written and all the computations per
formed by Mrs. M. F. McCall using the St. Andrews 
University computer. 

Values of o>0, a0 , a i, a2, and 5 must be assigned. These were 
chosen to be 

a)o=0.26933, a0 = 1.0202, a, =0.384, 

a2 =0.183 +0.070/, 6 = 0.00982 + 0.04621/, (2.9) 

which are the values appropriate for plane Poiseuille flow at 
Reynolds numbers near i?c = 5774, taken from Hocking, 
Stewartson and Stuart [6]. However, we do not claim that the 
results shown here are necessarily quantitatively accurate 
representations of unstable wave packets in plane Poiseuille 
flow. A fuller appreciation of the range of validity of the 
results is provided in Fig. 3. 

The solid curves shown in Fig. 1 denote constant phase lines 
calculated as described. The dashed boundary is a line of 
constant amplification, which would represent the neutral 
case a = 0 if R = 11,110. Curves are shown only for z/t > 0, 
the portion with z/t < 0 being identical, by symmetry. Figure 
2 shows lines of constant amplification. The labels indicate 
constant values of v, as defined in (2.8). The neutral boundary 
at given R>RC is therefore the curve on which 
v= 5rRc/2ct0R = 27.8 / ? _ 1 . The maximum possible value of v 
is ''max = o,V2a:0 =0.01924, which corresponds to a maximum 
growth rate o=6r(l -Rc/R), located at the origin 
X/t = z/t = 0. The curves labeled i- = 0.019, 0.016, 0.013, 0.010 
would be neutral boundaries (<r=0) for R = 5848, 6944, 8547 
and 11,110, respectively. The results display similar features 
in those shown in Figs. 2 and 4(a) of Part 1, which relate to 
analytic solutions obtained by making additional scaling 
assumptions. 

To enable comparison of these analytic approximations 
with the computed solutions, Fig. 2 also shows results (3.6) 
and (5.5) of Part 1 for neutral boundary at R = 6944 
(v = 0.016). Both analytic solutions underestimate the size of 
the unstable wave packet in this case. Since result Part 1 (3.6), 
requires 1 -Rc/R < < 1 and Part 1 (5.5) that \a2\is large, 
close agreement was not to be expected. 

3 The Model Dispersion Relation 

Gaster [4] has advocated the use of a series representation 
of the exact dispersion relationship and has shown that great 
accuracy is obtained on retaining a sufficient number of 
terms. Such accuracy is not to be expected from the simple 
model (1.1). In order to test the accuracy of (1.1), it has been 
compared with two situations for which precise numerical 
calculations are available; namely, the temporal and spatial 
instability of two-dimensional disturbances in plane Poiseuille 
flow. Results for the temporal problem have been computed 
by various authors, with good agreement. Those obtained by 
Sen and Venkateswarlu [1976 private communication] for R 

= 5780 and 10,000 and used here. For the spatial problem, we 
use the results of Itoh [7] for R = 6000 and 10,000. 

Figure 3(a) and (b) displays the temporal results, the crosses 
denoting computed values of o>r and o>, and the solid curves 
the model estimates, plotted against real wave number a. The 
values of the various constants in (1.1) were chosen as in (2.9), 
with Rc = 5774, 0 = 0, and y=a. Agreement at R = 5780 is 
nearly perfect, as might have been expected. For R = 10,000, 
agreement is predictably less good. The most notable 
discrepancies are a shift of about 7 percent in the most un
stable wave number, and an overestimate by the model of the 
(virtually constant) gradient doir/da amounting to around 14 
percent. In contrast, results for maximum growth rate are in 
substantial agreement, and the greatest error in wr is only 
about 6 percent for a in the range 0.7-1.2. 

Figure 4(a) and (b) shows a similar comparison between 
the model (solid curves) and Itoh's results for spatial growth 
(dashed curves), the real and imaginary parts of a being 
plotted against real frequency to. In solving (1.1) for a, it is 
necessary to disregard one (spurious) root of the quadratic 
equation. For R = 6000, results for ar are virtually identical 
and no dashed curve is shown. For R = 10,000, the slopes 
dar/doi are nearly constant but disagree by around 12 percent. 
With cor in the range 0.15-0.35, the greatest discrepancy in ar 

is about 3 percent. There is some discrepancy in a,(co) at R = 
6000, and more for R = 10,000. For the latter, the model 
overestimates the frequency of the most unstable mode by 
around 11 percent and predicts a range of unstable 
frequencies 20 percent wider than actually occurs; but, again, 
the estimate of maximum growth rate is quite good. 

At first sight, it looks as though calculations based on (1.1) 
might give good accuracy at Reynolds numbers between 5774 
and 6000 and acceptable approximations at much higher 
values, even up to 10,000. However, a closer examination is 
required. 

The greatest discrepancies between the model (1.1) and the 
computed eigenvalues are in dur/da (ordar/dto) and in the 
most unstable wave number (or frequency). Improved 
agreement may be effected by adding to the expression (1.1) 
for co the additional terms 

cosflf —)\b(y-a0)- — (l c~-)] (3.1) 
\ J?cos0/L w 0 / 4a2r V Rcosd/i 

where b = br + ibt is some complex constant. The real and 
imaginary parts of co, for 6 = 0 and 7 real, then become 

o>r = co0 + a l r(7 - «o) - 5/(1 - Rc/R) 

+ br(y - «0)(1 - Rc/R) + 02,(7 - a0)2 

a>,, = Sr(l - Rc/R) - a2r [7 - a0 - ~ (1 - Rc/R)]2 • 

Accordingly, the temporally most unstable wave number with 
0 = Ois 

7 = c*o+ p-Q-ReW, 2a2r 

with unchanged growth rate, and the real part of the group 
velocity is 

9cOr 
~=alr + br(\-Rc/R) + 2a2i{y-ct0)-07 

The term 2a2i(y- a0) in the latter expression is small for wave 
numbers of interest. Clearly, values of br and b, may be 
chosen to give a better fit with the exact temporally growing 
eigenvalues. An associated improvement in the spatially 
growing eigenvalues also follows. Values giving rather good 
agreement with the computed eigenvalues in Figs. 3 and 4 are 

6 r » -0 .10 , 6 , * -0 .052. (3.2) 
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It is necessary to investigate the consequences of these ad
ditional terms in the model dispersion relation. 

First we consider the situation investigated in Sections 3 and 
6 of Part 1, but modified to include these extra terms. That is 
to say, we introduce the scaling assumptions 

X z 
b=tb, 1-Rc/R = en, — =e£, — =e1/2rj, t 

and calculate the dominant exponential term exp tK(d*)as 
described in Part 1. In this connection, we note that a local 
expansion of the exact dispersion relation about the critical 
Reynolds number Rc and wave number a0 is now entirely 
consistent with the chosen model. Indeed, the incorporation 
of the terms in b is necessary for this to be so and this im
provement establishes the model as a formally valid ap
proximation to the exact dispersion relation sufficiently close 
to Rc and a0. 

It is found that 

K(6*) = i(aQal -co0) + / a 0 e ^ -
oi0T 

+ e2US-

1 

4a2 

2 ( a ) 0 - a 0 f l i ) -

2 (a ) 0 - ao f l i ) 2 

- ( V a^2 ) 
2(co0-a0a,)2 V 4(co 0 -c^a , ) / 

2 ' ban 

i<*W 2„2 

(« - * / * + 
&oV 

4(^o-

(>+ 
*o 

4a2r 

+ 0(e3). 
( a 0 t f , - a j 0 ) V 2(a0tf! - co0) / 

Comparison with (3.4) of Part 1 shows that the new terms 
enter at 0(e2). Accordingly, the 0(e) approximation for lines of 
constant phase remains as 

+ constant, «o'7 

2(co0-a0ai) 

but curves of constant amplification, at 0(e2), are modified by 
terms in b. Making the change of variables 

« = 
a0br 

[i,-tx(br + a2ib,/a2r)\ 

2(a0«i -">0)0*S)r 
1 + 

V = 
ctoV 

u0(a2rbr + a2ibi) 

2a 2 r ( a 0 « i - " 0 ) 

5, \ 1 / 2 

( 
(aaax - « 0 ) \2(ii§)r. 

(3.3) 

K=-
\a2\a0 br 

•,1/2 [ 1 + 
a0(a2rbr+a2ibi) 

(a0fli -o>0)[a2r(iib)r]
W2 L" ' 2a2r(aaa{ -w 0 ) 

these curves of constant amplification rate a are [c.f. Part 1 
(3.9)] 

f = - ^ ± [ J S : 2 ( l - 5 - 5 i 2 ) + M 2 ^ ( 2 - ^ 2 ) ] ( 3 - 4 ) 

where 

a=a/(jxS)r,M= 
la2la0bi 

2a2r(a0a1 - "0) + oi0(a2rbr+a2ibi) 

Compared with the definitions of f, 17, and K in Part 1, it is 
seen that r\ is unchanged, the origin of if is moved to 

/ / V R ) \ ' a2l. ) 

(in part to accommodate the variation in group velocity with 
R), and both f and K include the further scaling factor 

r a0(a2rbr + a2ibj)-i - ' 
1 + 

2a2r(a0ai - co0) 

Because this factor occurs in both J and K, the length (as 
measured by x) of the unstable packet on the axis of symmetry 
?j = 0 is identical to that found in Part 1. In addition to these 
changes of scale, the term in M2 of (3.4) influences the shape 
of the packet. Since M is a constant for a given flow even 
though R may change, and K is proportional to ( l - ^ f / 
R) ~1/2, it is clear that the term in M2 will be insignificant for 
values of R sufficiently close to Rc, but that its influence will 
be increasingly apparent as R increases beyond Rc. For the 
values given in (2.9) and (3.2), which are typical for plane 
Poiseuille flow, it is found that 

K \ 2 2.66 

-M) ~T^7R
 (3-5) 

which is 15.2 at R = 7000 and 6.3 at R = 10,000. Since the 
maximum allowable value of ij is approximately unity (for 
real roots £), it is clear that the omission from (3.4) of the 
term in M1 incurs only quite small errors. For example, the 
neutral boundary 5 = 0 at R = 10,000 has a maximum value 
of 7j equal to 1.075 including the M2 term and unity without 
it. Accordingly, there seemed little point in plotting curves 
based on (3.4): these will differ only slightly from those shown 
in Fig. 3 of Part 1 for the case M= 0. 

Of course, the analysis leading to (3.4) cannot be expected 
to remain valid for R as large as 10,000, since it was assumed 
that 1 -Rc/R is 0(e) when e is small. The results of Section 2 
introduced no such scaling assumption, and the work 
described may also be extended to include the additional 
terms (3.1) in the dispersion relation. It is found that the 
dominant exponential is then exp tK] (d*) where 

„ ^ 8RC cos«* 
K](d")= + ( A - V ) 1 R Aa2

 y ' 

bjcosd* 
4a 2r 

4z 
sin20* = — (p 

ia0bRc 

Rcosd*) R 

a2b
2 r / Rc 

6-—) 
V Rcosd* J 

I a2r L \ Rcosd* J J 

-M2-R~F*)Y] 

and A, <p are redefined as 

A = 4 a 2 [ - /w0 + 8 + /a0(tf, +bl)-a
2
ta2], 

^f + |tan^-2/«0.2^(l-^), 

which may be compared with results (2.1) and (2.2). When z 
and 0* are set equal to zero, corresponding to points on the x-
axis, it is readily confirmed that 

Re (*,(<))} 

£i*LT-('-£)(^)] : 
4 l a 2 h L t \ K / \ a2r 

which is consistent with result (3.4) in the foregoing with ij = 
0. 

It may be anticipated that, provided 1—RC/R is fairly 
small, the dominant effects of the 6-terms will be similar to 
those discovered for the smal l -e expansion. These are [c.f. 
results (3.3)]: (/) a shift of origin, following the "center" of 
the disturbance, to 

Xn x-a,t F-b-'i)^)-
(ii) a magnification, whereby X/t for the case b = 0 is 
replaced by S" ' (X~X0)/t with 

S = l + 
ot0(a2,.br + a2ibj) 

2a2r(a0at ~~ w0) ' 
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and (iii) a change in the effective value of a2 to a2S~2 which 
ensures that the "length" of the disturbance on the x-axis is 
identical with that when b = 0. Since the ratio (M/K)2 is 
fairly small even for values of R as large as 10,000, further 
Reynolds-number-dependent variations are expected to be 
comparatively slight. Curves of constant amplification and 
phase may be computed from the foregoing relations if 
required. For plane Poiseuille flow, S turns out to be ap
proximately 0.5 and the influence of the b terms is significant 
at all values of R > Rc since S is independent of R. The 
results presented in Figs. 1 and 2 of Part 1 and in Figs. 1 and 2 
of the present paper must be interpreted accordingly. In 
particular, the shape of the unstable packet, in physical (X-
X0)/t-z/t space, is somewhat less "swept-back" than 
predicted by the theory with b = 0, because of items (ii) and 
{iii) in the foregoing. For flows in which \b\ < <\ax -
w0/a01, S is close to unity and results for b equal to zero yield 
good approximations without need for reinterpretation. 

At the opposite extreme, flows for which S is close to zero 
will exhibit little sweepback of unstable wave packets; because 
as S—0, result (3.4) simplifies to 

(Z/Kf + r? = \-d+(M/K)2tf(2-tf) 
which is close to an ellipse when (M/K)2 < < 1. Also, flows 
with 

ax - u0/a0 + — [br + bi(a1i/a2r)] <0 

must have wave packets that are concave downstream rather 
than upstream. 

4 A Model For "Splitting" Packets 

It is well known that the greatest possible growth rate of a 
two-dimensional Fourier mode frequently occurs at some 
finite value of R = RX(>RC). Consequently, when ./?>/?!, the 
most unstable mode need not be two-dimensional. In such 
cases, the possibility arises that a localized disturbance need 
not remain centered on the x-axis, but may "split" into two 
regions of maximum amplitude. To demonstrate this 
phenomenon, we adopt the model dispersion relation 

4o = cos0[a!O +a i (7-ao) -~ ' f l 2(7 - o ; o) 2 + i&\ 

-i82(l-Rl/Rcosd)2]. (4.1) 

Here, a0 is the wave number of the most unstable mode at 
R = R{. Of course, this model may not accurately represent a 
particular flow and further terms might have to be in
corporated, much as in the foregoing, to achieve better ac
curacy. But, for simplicity, attention is here restricted to (4.1). 

Here, the critical Reynolds number Rc and another, higher, 
Reynolds number R; are related by 

/? , / /? , = l+(6 l r /« 2 r )
1 / 2 

where a2, 5,, and 82 are complex constants with positive real 
parts and co0, a0, ax are real constants as before. Now, 
temporally growing modes have a maximum possible growth 
rate a>, =8lr when 0 = 0, y = a0, and R = Rit and when R > 
Rit the disturbance that grows most rapidly may be an 
oblique wave with 0 ^ 0 . More precisely, for real 7 and 0, 
du,/dY = 0 when 7 = a0, and dco,/d0 = O both when 0 = 0 and 
when 0 = 0„, = cos- 1 [(Ri/R)(l — 6 l r/52r)

 1 / 2 ) , the latter 
solution existing provided 8lr<82r andi? > Rt(l - 8lr/82r)~ 
1 / 2 . F o r 7 = a o a n d 0 = O, 

« / = filr-Mi--Ri/^)2, 
while for 7 = a0, 0 = 0,„, 

co ,=25 2 r ( i? 1 / i ? ) ( l - ( l -6 l r /5 2 r )
1 / 2 ) . 

The latter exceeds the former for all R > R{(1 - 8u/82r) ~1/2; 
that is, whenever the latter root exists. 

The model dispersion relation (4.1) is thus an instance of 

the situation first envisaged by Watson [9] for temporal in
stability, where oblique modes may be most unstable at 
sufficiently large R. The nature of the development of 
localized disturbances in such cases is very different from that 
found in the foregoing. 

The saddle-point method may be applied as in Part 1, 
Section 2, and in Sections 1-2 of the present paper with the 
following results. On defining 

X z 
<p= — H tan0*-2/a o« 2 , A, == 4a 2 [ - z'co0 +ia0a1 

- ala2 + 5, - 52 + 82(Rl /Rcosd*)2] 

the dominant exponential term is exp / AT2(0*) where 

252 cos0* , 282Ri 
K2(d*) = ^—(Al-<P

2) + 

and 

4a2
 v" r R cos0 

s i n 2 0 * = 4 ( z / O ^ 2 - A 1 ) - 1 . 

^ ) 
(4.2) 

(4.3) 

These are the counterparts, for the dispersion relation (4.1), 
of the results shown in (2.1) and (2.2). The real part of K2{6*) 
yields the equation for curves of constant amplification rate a, 

282rR, fcos0* 252 

0= — = hReJ —; (A! -<p2)-
* $ ) ' ) • • R U a 2 cos0* 

while the imaginary part gives lines of constant phase 

-(in T r cos0*, k . 282 Im\- '" -2x 

1. 4a, -(A,-V)- = constant. 

(4.4) 

(4.5) 
*2 COS0* 

Results (4.2)-(4.5) may be used to find computed solutions as 
was done in Fig. 2. However, since the dispersion relation 
(4.1) is proposed only as an instructive qualitative model, 
rather than as a basis for precise results, attention is here 
restricted to a particular case when simple analytical solutions 
can be found. 

This case is the analogue of that presented in Section 5 of 
Part 1 for situations where 8 is small but a2 is large. Ac
cordingly, we write 

82=8id2, a2
l =SjX 

and consider 8\ to be a small (complex) parameter and d2, X to 
be 0 (1) complex quantities independent of 8{. To leading 
order in 8{, result (4.3) yields 

lit 
t a n 0 * = — — — + 0 ( 8 . ) 

X/t + at -u0/a0 

which may be re-expressed as 

0* = 0O +Si 0i. 0O = tan~ 

z/t 
X/t + a\ — o)0/a0 

Letting r/, =z/t, ^ =X/t + ax -w0/a0 as in Part 1, Section 5, 
result (4.2) reduces to 

K2(6*) = ia0(!i
2+v

2y'2+0(8l), 

which yields constant phase lines which are circles in the 
X/t - z/t plane with center X/t = co0/a0 - «i, z/t = 0. That is, 
the center of the circles travels with the phase velocity oj0/a0, 
such that x/t = X/t + al =co0/a0 . This was also the case for 
the solution found in Part 1, Section 5. 

To the next order, 

jr 2 ( n =/« ,«? + ^r + « I (?^i) + (7F^[i-rf2 

the terms in d\ vanishing identically at 0(5!). Taking the real 
part, the amplification rate a is given by 

1 tit HI i_ -t- — - — 
R 

2/? 
a=^(8,d2)r + (ti + vi) 2\l/2 [«1,-(M2), 
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( M W f i + 1 7 0 -«1 + 
« 0 ) : 

ft«(8;) (^ ) ] + 0(« ) . («) 
On introducing polar coordinates p\, 4>t defined as 

^ ,=p 1 cos0 1 , ?j1=p1sin01, 

this result may be rewritten as 

8,J -o)0/aQ 

-COSSi ± M ; JCOS0! f I COS(/>! 
« 1 , < 

A(cos^,- -^ ) J (4.7) 

where 

M s 
21a, I 

( — ) ' " • 
V a-,, / 

A = 
(M2 ) r 

(a, - u n / a n ) ^ a2r / ' 5,,. 5,r 

Here, the growth rate a cannot exceed Slr. This result may be 
compared with Part 1, equation (5.5). When both conditions 

R/R^^^-J , A>1 (4.8) 

are satisfied, the growth rate a has an absolute maximum 
value 

amax = 28lr(Rl/R)A[l - { 1 - A ' ) 1 / 2 ] 
at two points 

Pi" ( 1 - A ^ ' ) 1 / 2 ' 
_. r Rt/R i 

</>i = ± C O S ' 7—r-p; . 

L ( 1 - A - ' ) 1 / 2 J 
Otherwise, a maximum value of 

am!a=5]r[l~A(l-Rl/Rf] 

(4.9) 

(4.10) 

is obtained at 

px =al -w0/a0, 0 i=O. 

This point is a saddle point of o\px, <£,) when (4.8) is satisfied. 
Conditions (4.8) are precisely those that ensure that the 
temporally most unstable mode is an oblique wave. 

The shapes of curves of constant amplification a are readily 
found from (4.7). In some cases, pt becomes zero and there is 
a cusp at the origin. This also occurred in Part 1, Section 5, 
where it was pointed out that the saddle-point method may 
break down near p, =0 because of violation of condition 
(1.4). If Ail-Rj/R)2 > 1, the neutral boundary does not 
intersect the x//-axis and there are two distinct unstable 
regions, one on either side of it. Curves of constant am
plification CT/5,,. = 0, 0.6, and 0.8 were calculated for the 
particular case Rx/R = 0.8, A= 10, M=0 .5 , and are shown in 
Fig. 5. The corresponding lines of constant phase are circles 
with their centers at the origin. 

It is clear that the dispersion relation (4.1) yields results 
dramatically different from those found previously. Now a 
splitting of the wave packet yields greatest amplitudes at two 
peaks on either side of the x/t axis, whenever conditions (4.8) 
are satisfied. For R/R^ less than (1 - A~ ' )~ l / 2 or A< 1, no 
splitting takes place and the results would then be 
qualitatively similar to those described in Part 1, Section 5, 
and in Section 2 in the present paper. 

Since R]/Rc is around 10 for both Blasius and plane 
Poiseuille flow, A< 1 in the present model and no splitting is 
then predicted; but firm conclusions must await more ac
curate representation of the dispersion relation for R> >RC. 
The occurrence of two amplitude maxima in the experiments 
of Gaster and Grant [2] was almost certainly due to nonlinear 
effects. But it is conceivable that initially small, local 

J J j , 

Fig. 5 Lines of constant amplification from (4.7) for R^IR = 0.8, A = 
10, M = 0.5, showing splitting of packet. Values of ff/5if = 6 shown are 
0,0.6, and 0.8. Coordinates are i;1 = £i(a-| -u>0laQ) , ij-\ = i ) i ( a i -
o)0/ao) 

disturbances in Blasius flow may ultimately exhibit a "two 
peak" structure at sufficiently large R owing to linear effects 
alone. Gaster's [3] computations, involving linear super
position of many discrete modes with real frequencies and 
spanwise wave numbers, did not reveal a two-peak structure, 
but his representation cannot remain adequate at very large 
times and distances, on account of the ever-increasing 
spanwise extent of the wavepacket. 

The approximate technique described here and in Part 1 
appears capable of fruitful extension to three-dimensional 
and spatially varying mean flows, for which precise com
putations are impractical but which are of great practical 
interest. 

Acknowledgment 

I am grateful to Mrs. M. F. McCall for carrying out the 
computations described in Section 2, and to Dr. Pradeep Sen 
for making available the computational results shown in Fig. 
3, also to a referee for helpful comments. 

References 

1 Craik, A. D. D., "The Development of Wave Packets in Unstable 
Flows," Proceedings of the Royal Society of London, Vol. A373, 1981, pp. 
457-476. 

2 Gaster, M., and Grant, I., "An Experimental Investigation of the For
mation and Development of a Wave Packet in a Laminar Boundary Layer," 
Proceedings of the Royal Society of London, Vol. A347,1975, pp. 253-269. 

3 Gaster, M., "A Theoretical Model of a Wave Packet in the Boundary 
Layer on a Flat Plate," Proceedings of the Royal Society of London, Vol. 
A347, 1975, pp. 271-289. 

4 Gaster, M., "Series Representation of the Eigenvalues of the Orr-
Sommerfeld Equation," Journal of Computational Physics, Vol. 29, 1978, pp. 
147-162. 

5 Gaster, M., "The Propagation of Linear Wave Packets in Laminar 
Boundary Layers—Asymptotic Theory for Nonconservative Wave Systems," 
A.LA.A. Paper 79-1492, 1979. 

6 Hocking, L. M., Stewartson, K., and Stuart, J. T., A Nonlinear In
stability Burst in Plane Parallel Flow," Journal of Fluid Mechanics, Vol. 51, 
1972, pp. 705-735. 

7 Itoh, N., "A Power Series Method for the Numerical Treatment of the 
Orr-Sommerfeld Equation," Transactions of the Japan Society for 
Aeronautical and Space Science, Vol. 17, 1974, pp. 65-75. 

8 Itoh, N., "Linear Stability Theory for Wave-Packet Disturb
ances in Parallel and Nearly Parallel Flows," Proceedings of I.U.T.A.M. 
Symposium on Laminar-Turbulent Transition, Stuttgart, Eppler, R., and 
Fasel, H., eds., Springer, 1980, pp. 86-95. 

9 Watson, J., "Three-Dimensional Disturbances in Flow Between Parallel 
Planes," Proceedings of the Royal Society of London, Vol. A254, 1960, pp. 
562-569. 

290/Vol.49,JUNE1982 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



D. F. McTigue1 

Geology Department, 
Stanford University, 

Stanford, Calif. 94305 

A Nonlinear Constitutive Model for 
Granular Materials: Application to 
Gravity Flow 
The form of the dissipative part of the stress in flowing granular materials is 
motivated by considering momentum exchange due to intergranular collisions. Both 
shear and normal stresses are predicted that are quadratic in the rate of defor
mation. The equilibrium part of the stress is assumed to include a thermodynamic 
pressure and a term compatible with the Coulomb failure criterion in the limit of 
vanishing deformation. Solutions for the volume fraction and velocity fields in 
steady gravity flow down a slope are found. The volume fraction increases linearly 
downward through the shearing layer at a rate that decreases with increasing slope. 
The velocity profile develops an inflection near the lower boundary at smaller 
slopes, and becomes fully convex downstream as it approaches a critical maximum 
slope for steady flow. The results are in qualitative agreement with available ex
perimental measurements. 

Introduction 
Interest in the flow behavior of granular materials is 

primarily motivated by design problems in the bulk handling 
of grain, sand and gravel, powders, and other particulate 
solids. Flowing granular materials also represent a limiting 
case of two-phase flow at high solids concentrations and high 
solid-to-fluid density ratios. Their understanding is thus 
pertinent to slurry transport and perhaps to certain natural 
sediment transport problems. Despite the practical im
portance of such flows, no general and completely satisfying 
mechanical theory for their description has emerged. 

This work is directed toward developing and exploring 
some of the implications of a nonlinear continuum model for 
flowing granular materials. As with most similar efforts at 
this juncture, the theory must be regarded as speculative, 
particularly in the absence of an extensive body of relevant 
experimental data. Previous continuum theories generally fall 
into two broad categories: plastic and viscous. The former, 
exemplified by the work of Shield [22], Spencer [23], and 
Mandl and Fernandez-Luque [12], depart from the stress 
relations for a frictional-cohesive material at failure, leading 
to rate-independent constitutive equations. Viscous, or rate-
dependent theories imply momentum fluxes within the 
deforming material due to particle interactions. Goodman 
and Cowin [4, 5] have advanced a linear theory of this type. 
The present work includes features of both the plastic and 
viscous models. 

A successful theory must embody several features 
characteristic of granular materials. An assemblage of close-

1 Presently at Sandia National Laboratories, Albuquerque, N. Mex. 87185, a 
U. S. Department of Energy facility. 
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paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by 
ASME Applied Mechanics Division, May, 1980; final revision, October, 1981. 

packed grains must undergo volumetric expansion for any 
deformation to occur, a phenomenon known as dilatancy 
[16]. Similarly, it can be anticipated that in fully developed 
flow beyond failure, the volume fraction of solids will 
respond to the dynamics of the flow, and the stresses will vary 
strongly with the volume fraction. Granular materials can 
sustain finite shear stresses in the absence of any deformation, 
and the critical stress at which shearing begins depends on the 
normal stress. A theory for the flow beyond this initial failure 
should, in the limit of vanishing deformation, predict stresses 
that resemble those at failure. Finally, it is noted that the 
experimental work of Bagnold [1] and Savage [18] suggests 
nonlinear rate dependence. It is these features that the 
following developments endeavor to accommodate. Savage 
[19] has independently worked toward a similar end, but his 
approach is somewhat different, particularly in posing the 
equilibrium stress. 

Structure of the Theory 
It is assumed that a granular material can be treated as a 

material continuum. Implicit in this assumption is the caveat 
that the theory is expected to be valid only at length scales that 
are large relative to the particle scale. 

The model material considered here is comprised of grains 
of uniform solid density, y, and voids with no mass. Thus, the 
bulk density, p, can be written 

P = y, (1) 
where v = volume fraction of solids2 [5]. 

Employing (1), the usual balance laws for mass, 
momentum, and moment of momentum in a purely 
mechanical ("isothermal") theory become 

j,+ „ v . u = 0, (2) 

The volume fraction, v, is the ratio of solids volume to total volume, and is 
related to the porosity, tj, and the void ratio, e, by i>=l — TJ = 1/(1 +e). 
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<yi/ii= v »T + 7cb, 

T = T \ 

(3) 

(4) 

where u = velocity, T = stress, and 7Hb = body force per unit 
volume. A superposed dot indicates the material derivative. 
Equation (4) assumes no couple stresses or external body 
couples. 

Closure to the system (2)-(4) is sought in the form of a 
constitutive equation, 

T = T(u,D), (5) 

where D = [ v u + ( v «) '] =rate of deformation. The total 
stress, T, may be decomposed into an equilibrium part, T°, 
and a dissipative part, T* [4]: 

T = T ° + T * (6) 

where T° is of order zero in D, and thus can remain finite in 
the absence of deformation. Goodman and Cowin [4, 5] and 
Savage [19] include v v among the independent constitutive 
variables in (5) in order to include the effect of microstruc-
ture. 

Collisional Momentum Exchange 

The dependence of the macroscopic stress on the rate of 
deformation is expected to somehow reflect the mechanisms 
of momentum exhange within the material at a microscopic 
scale. A simple model for momentum exchange by in-
terparticle collisions is examined here to provide some in
tuitive motivation for the choice of rate-dependent terms in 
the constitutive equation adopted. A preliminary version of 
this development was presented by McTigue [13]. 

Consider a system of spheres of uniform radius and density 
in a steady two-dimensional shear flow. It is assumed that 
both the concentration of particles and the velocity vary 
smoothly across the flow. A low concentration of solids is 
assumed, so that only single collisions are considered, and 
particles can be assumed to approach a reference grain 
parallel to the flow direction at a relative velocity that is 
related to the mean motion. Fluctuations of the particles 
about the mean velocity are ignored. 

The flow is defined relative to a Cartesian coordinate 
system fixed at the center of an arbitrary reference particle in 
the flow. A cylindrical coordinate system is also centered on 
the reference grain (Fig. 1). The reference particle, of radius 
a, will interact only with grains whose centers lie within a 
"collision cylinder" of radius 2a with its axis aligned with the 
flow (Fig. 1). 

Consider now a single perfectly elastic collision between 
two grains. The change in momentum, Am, of the reference 
grain is 

4 , 
Am= - ira* y(ri'\r)n, 

where n = inward-directed contact normal, 
velocity. The contact normal is given by 

rcosd rsind \l4a2 -
- e , ± 2a 2a 2a 

(7) 

and vr = relative 

72 

- e 3 , (8) 

where the ± in the x3 component holds in the lower and upper 
hemispheres, respectively. The relative velocity is ap
proximated by the leading terms in the expansion about 
x2=0: 

1 , 
vr (x2) = (u0'x2 + - uQ"xi + ••••)e3, (9) 

where, for brevity, u0' has been written for the derivative «3 2 

evaluated at x2 =0. 
The collision frequency,/, is given by 

/ = - » l v , . l . 
a 

(10) 

u,l*^ 

Fig. 1 Definition sketch for collisional momentum exchange 

The volume fraction, c, is approximated by the leading terms 
in the series 

v{x2) = i>0 + ^x2+ -vSxl + - (11) 

The net force, F(0), exerted on the reference grain is found 
by integrating the rate of change of momentum, /Am, found 
by combining (7)-(ll), over all possible collisions, where each 
is assumed to be equally probable. The result, after dropping 
fifth- and sixth-order products of derivatives, is 

64ya5 , / 8 \ 
m)= - ~^[f0u!>uS+pl(ui)2][Tre2+ -e3). (12) 35 

The force per unit volume, F(0), is obtained by multiplying 
F(0) by the number density, 3v0/4ira3: 

48-w2 / 8 \ 
F ( 0 ) = - - - ^ [ ^ M 6 " o + ''o>'o("o)2](e2+ = -e 3 ) (13) 

35 V 3TT / 

The choice of the reference particle is arbitrary so that, in 
general, F(x2) is given by (13) with v, u3, and their derivatives 
evaluated at x2. 

Consider now an arbitrary control volume, R, bounded by 
the surface S. The total force, EF, acting on R due to the 
shearing is given by 

- 487a2 

EF = 
35 

l,22 + VV,2(uh2)
2\ J J L [ " 2 M « W 

(.2 +le,)rfR, (14) 

where the full indicial notation is again employed. 
For this flow, in which only gradients in x2 exist, (14) can 

be written in terms of a tensor quantity T *: 

EF = 

where 

and 

Ti,= 
-24ya2 

"™35 

V«T* dR, 

" 2 ( " 3 , 2 ) 2 . 

23 " 357T " ("3 '2> • 

(15) 

(16) 

(17) 

By Gauss' divergence theorem, equation (15) can be rewritten 

EF = [ \ n-T* dS, (18) 

where n is here the normal to the surface S. This expression is 
equal to the total rate of change of momentum within S due to 
the action of the surface forces imposing the shear. But this 
quantity is also identified with the surface integral of the 
stress, so the tensor T* is seen to represent the stresses 
associated with collisional momentum exchange in a flowing 
granular material. 
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Fig. 2 Shear stress (T) versus shear rate (x) for various values of the 
volume fraction of solids. Data from Bagnold [1], for neutrally buoyant 
spheres in viscous fluid. Dashed lines are fit to data by eye. 

Reversing the flow direction and repeating the analysis will 
change the sign of the shear stress, but not that of the normal 
stress. Hence, (17) should be written 

^ ^ 6 4 ^ ^ ! (19) 
357T 

Similar results have been obtained by Bagnold [1] and 
Kanatani [10]. Bagnold [1] performed extensive experimental 
measurements of shear and normal stresses in concentrated 
suspensions of neutrally buoyant spheres, assuming that the 
stresses arise dominantly from particle-particle interactions. 
His findings for the shear rate dependence are shown in Figs. 
2 and 3, and show excellent agreement with the quadratic 
relation predicted by (16) and (19) over the entire range of 
shear rates tested. To examine the dependence of the stresses 
on v, Bagnold's data are replotted in Fig. 4. The predicted 
quadratic dependence is reasonable for lower values of u, say 
from v — 0.2-0.4. However, at higher volume fractions, the 
theory is clearly not valid. This result is not surprising, for it is 
obvious that at very high concentrations interaction 
mechanisms such as multiple collisions and sliding friction 
become important. In fact, at some large value of v, the grains 
will become "locked" and continuous deformation cannot 
occur. Indeed, Bagnold's data show the stresses becoming 
very large as v approaches a value of approximately 0.63. An 
empirical modification to the predictions of (16) and (19) that 
is consistent with the available data may be written in the 
form 

T*22~ -(v-vm) -2(«3,2)2, (20) 

7 I 3 ~ ("-"/») "2l"3,2l"3,2. (21) 
where v,„= maximum volume fraction for flow. The v-
dependence suggested in (20) and (21) is shown in Fig. 4. 
These expressions also compare favorably with the more 
recent data of Savage [18]. 

The Form of T* 
A properly invariant constitutive equation is now sought 

such that it reduces to the form of (20) and (21) for the special 
case of unidirectional plane shear flow. The principle of 
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Fig. 3 Normal stress (a) versus shear rate (x) for various values of the 
volume fraction of solids. Data from Bagnold [1]. 
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Fig. 4 Dimensionless shear stress versus volume fraction of solids. 
Data from Bagnold [1]. 

material indifference [25], along with the constitutive 
assumption given in (5), requires that T be an isotropic tensor 
function of the symmetric tensor D, the most general 
representation of which is easily shown to be 

T = / 0 1 + / , D + / 2 D 2 , (22) 

where/0 , ft, and / 2
 a r e functions of v and I, II, and III, the 

principal invariants of D: 
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I = trD, ll=-[(trD)2-trD2], III = detD. (23) 

Equation (22) defines a Reiner-Rivlin fluid [17]. Experimental 
work with nonlinear fluids exhibiting normal stress effects has 
led most investigators to abandon constitutive equations of 
this form (e.g., Truesdell [24]). However, the view is adopted 
here that there are as yet insufficient data for granular 
materials to justify moving beyond the simple constitutive 
assumption of (5). 

An expression for T* that is of the form of (22) and reduces 
to (20) and (21) for plane shear flow is 

T ' ^ d ' - ^ r ' H ' ^ D - ^ - O ^ D 2 , (24) 

where r;, and r;2 are non-negative material constants, and 

II ' = - 1 - 1 1 = - r r D 2 . (25) 
2 2 

Savage [19] has suggested a similar generalization of the 
findings of Bagnold. This choice of terms for the dissipative 
stress is not without some ambiguity, and is discussed in detail 
by Jenkins and Co win [9] and McTigue [14]. 

The Form of T° 

Attention is now turned toward determining an appropriate 
form for the equilibrium stress, T°. In particular, it is an
ticipated that T° must include an isotropic thermodynamic 
pressure, p, and a term that allows finite shear stresses at 
incipient failure. This latter term is taken in a form introduced 
by Hohenemser and Prager [7], and is included in the function 
ft in equation (22), giving 

T ° = - P 1 + K H ' - 1 / 2 D (26) 

where p and K are functions of v, to be further discussed in the 
following. 

In the limit, as D vanishes, equation (26) must give the 
stresses in a granular material that is everywhere at failure, 
here taken to correspond to the critical state of the soil 
mechanics literature. This is defined as a condition in which 
continuous deformation takes place under constant applied 
shear stress and at constant volume fraction [21], Thus, in the 
critical state, tr D = 0. 

The relationship between shear and normal stresses for 
granular materials at failure is well represented by the Mohr-
Coulomb criterion, which is given in a familiar form for plane 
stress by 

T=C— a tan0, (27) 

where T = magnitude of critical shear stress, c = cohesion, 
o = normal stress (assuming zero pore pressure), and 0 = angle 
of internal friction. By requiring (26) to embody (27), and 
knowingp, the failure function, K, can be determined. 

Determination of p(v). An equation of state for the 
thermodynamic pressure, p, under isothermal conditions is 
determined following Goodman and Cowin [5], leading to 

P = 7 " 2 / . (28) 
ov 

where ^ = Helmholtz free energy per unit mass. After 
arguments similar to those of Goodman and Cowin [6], but 
neglecting constitutive dependence on V v, the free energy per 
unit volume, yv4>, is taken in the form 

yv^ = a(v-vc)\ (29) 

which for a > 0 is non-negative for all v, and has a minimum 
at v=vc (see also Passman, et al. [15]). Substituting (29) into 
(28), 

p = <x(v2-vc
2). (30) 

Note that this is identical to the form of p(v) found em-

ylx,) 

z~/ / / / 
1 

>-, ^ ^ 

/ U l ( X 2 ) 

/" r 
x2 

Fig. 5 Definition sketch for gravity flow 

pirically by Jenike [8], although he suggests that the exponent 
in (30) is much larger (> 10). 

Determination of K(V). The function K(V) can now be 
determined. Drucker and Prager [2] have offered an invariant 
generalization of the Mohr-Coulomb failure criterion (27): 

- s i n 0 i ! +72 ' l /2-ccos(/> = 0, (31) 

where Jx and J2 are the first invariant of T° and the second 
invariant of the deviatoric equilibrium stress, T° -
l/3(?/-T°)l, respectively. From (26), these are given by 

/ , = -3p + Kll'-W2trD, (32) 

J[=~K
2ll'-itr{B'2), (33) 

where D ' = D - l/3(?rD)l. Recalling that in the critical state tr 
D vanishes, (32) and (33) reduce to 

7, = - 3 p , Ji = K2. (34) 

Substituting (34) into (31), and using (30), 

K = ccos4> + as'm<f> (u2 -vc
2). (35) 

A similar form has been derived by Kanatani [11], departing 
from an associated flow rule in plasticity theory. Finally, 
collecting (26), (30), and (35), 

T ° = — a(v2 - cc
2)l + [ccos</> 

+ as in<£(v 2 - (V 2 ) ] i r - 1 / 2 D. (36) 

It is noted here that (36) is consistent with the observation 
(e.g., [21]) that the specific volume (1/c) of a granular 
material in the critical state decreases nonlinearly with in
creasing confining stress. 

Gravity Flow 

The boundary value problem for steady flow of a cohe-
sionless (c = 0) granular material down a slope is now con
sidered (Fig. 5). The momentum balance (3) reduces to 

0=7 ' 2 1 i 2 +7^s in /3 , (37) 

0= r ^ + 7 i » g c o s | S , (38) 

where /3 = slope. From (24) and (36), the stress components of 
interest are 

r21 = - a s i n < / > ( ^ 2 - r c
2 ) - r h K , - ^ - 2 ( W l , 2 ) 2

) (39) 

T22 = -a(v2- v2)-rtl{vm - c)-2(«,,2)2, (40) 

having accounted for the particular choice of coordinates 
shown in Fig. 5 in writing the second term in (39). 

Substituting (39) and (40) into (37) and (38) and non-
dimensionalizing with respect to a characteristic velocity U 
and the flow depth d, the equations of motion are 

0=-Nlsm<l>vv,2~N2N3[(Vm-v)-
2(uU2)

2],2 

+ N4 win/3, (41) 
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where u{ and x2 are now dimensionless, and 

2 a •• ih_ KT V2 

V2 
N,=- N7 M = Nd 

gd 

U2' 

(42) 

(43) 
yU2 ' £ f]2 ' yd2 

The appropriate boundary conditions for the free surface 
are, from (39) and (40), 

m = Pc, (44) 

«i.2(0) = 0. (45) 

A no-slip condition is assumed at the bed: 

«,(1) = 0. (46) 

The last condition has been substantiated experimentally for a 
sufficiently rough boundary [19]. 

The terms in the velocity gradient are easily eliminated 
between (41) and (42), giving an uncoupled equation for the 
volume fraction. Integrating and using (44), 

v=i>c+Tx2. (47) 

where 

7V4 7V2 cos/3-sin/3 

Ni N2 - sin$ 
(48) 

Thus, the volume fraction of solids simply increases linearly 
downward through the flowing layer at a rate that decreases 
with increasing bed slope, /3. At the critical slope, /3C = tan~ ' 
(r/i/j/2), r vanishes and the volume fraction of solids is 
uniform across the flow. 

Recalling that v cannot exceed the maximum value vm, 
equation (47), in dimensional form, gives a maximum flow 
depth, dm, for any fixed flow conditions: 

d,„ = 
2a 

sin? 
V2 

ygcosp rjl 
{vm-vc). (49) 

Vi 
-tan/3 

A similar observation has been made by Savage [19]. Note 
that as tan/3 approaches the maximum value 17 (/i?2 , d,„ 
becomes unbounded. 

Finally, (47) is substituted into (42), and integration ap
plying (45) and (46) yields: 

K i ^ A W i t a ) 3 - ^ ! ) 3 ] 

2r 
\F,(X2)F2(X2) 

F(UF(U " c 2 . A F , t e ) + F 2 ( . r 2 n 
(50) 

whereF, = (vcx2 + l/2Tx2
2),F2 = vc+Tx2, A = (2r)1 / 2 , and 

N5 = {N4cosfi — NiT)/N3. This result is shown in Fig. 6, 
normalized to the surface velocity, us, for various values of vc 

and T, assuming vm =0.63. Note that (47) requires r<j/,„ — vc, 
a limit accounted for in Fig. 6. For increasing slope, Y goes 
from its minimum value V = v,„ — vc to zero, and the velocity 
profile becomes fully convex downstream, losing the in
flection point near the bed. Consideration of (39) reveals that 
as v approaches vm, the velocity gradient must vanish in order 
that the shear stress remain finite, resulting in the inflection in 
the velocity profile. For r = 0, v is uniform, and the velocity 
gradient need not vanish near the bed. Note that because of 
the change in bulk density across the flow (47), the shear stress 
distribution is, in general, nonlinear. 

The velocity profile (50) is more easily visualized through 
several limiting cases of interest. First, consider flow at the 

V 

V—7—7—?—7—7—7" 

Vc=30 

r = 6 2 / / / 

/ / r ~ o 

////// / / 

Fig. 6 Velocity profiles for gravity flow (50), normalized to surface 
velocity, u s . Maximum r corresponds to minimum bed slope, vanishing 
r to maximum slope. Value vm = 0.63 used in calculations. 

critical maximum slope, for which V vanishes (48) and v 
becomes uniform (47). Integrating the resulting equation of 
motion, applying the boundary conditions, and normalizing 
to the free surface velocity gives 

= l-x2
3 

(51) 

shown in Fig. 7. This is precisely the velocity field found by 
Bagnold [1]. Thus, his result emerges as a special case of the 
model presented here that can be obtained at only one slope. 

A second special case is for flows at the maximum depth 
(49). In this case, T = v„, —vc, and (42) can be integrated at 
once to give 

1 
"1,2 = -Ns{vm-vc)\vcx2 + - (i>m-i>c)X21}(\-x2). (52) 

It is immediately apparent that the velocity gradient vanishes 
both at the free surface (x2 = 0) and at the base of the flow 
(x2 = 1). The effect of different values of cc can now be 
examined. The possible extreme values are vc —0, for which 

= 3 ( l - x 2
2 ) - 2 ( l - x 2

3 ) , 

and vc — u,„, for which 

«, 2 V - x 2
3 / 2 ) - ^ ( l - x 2

5 / 2 ) , 

(53) 

(54) 

shown in Fig. 7. In the latter case, of course, the flow depth 
becomes vanishingly small (49) and the entire flow is arrested. 

Savage [18, 19] has performed a series of elegant ex
periments to measure velocity profiles in gravity flows of 
granular materials. He used polystyrene beads with a mean 
diameter of 1.22 mm and a specific gravity of 1.03, in a 
channel 3.86 cm wide with smooth side walls and a rough 
bottom. Velocities were measured at the side wall by means of 
fiber-optic probes. Steady flows of about 1.5 cm depth were 
obtained on slopes between 30 deg and 40 deg with surface 
velocities on the order of 100 cm/s. The no-slip condition was 
verified by extrapolation of measured velocities near the bed. 

There is substantial qualitative agreement of the theoretical 
velocity field (50) with the results of Savage. The measured 
profiles exhibit inflections, with the gradient becoming small 
near the bed. The profiles become fuller for increasing slope, 
corresponding to increasing T in the theory. Again, this is the 
behavior predicted by (50). 
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Summary and Discussion 

A constitutive equation for flowing granular materials has 
been posed that consists of an equilibrium part, of zero order 
in the rate of deformation, D, and a dissipative part that 
vanishes as D vanishes. The equilibrium part, T°, includes a 
thermodynamic pressure and a failure term. The latter is 
determined by assuming that in the limit as D —•• 0, T° must 
give the stresses in a Coulomb material at failure. A nonlinear 
representation for the dissipative stress is motivated by a 
simple model for collisional momentum exchange in a plane 
shear flow and by available experimental data. The model 
predicts both shear and normal stresses that are quadratic in 
the rate of deformation, because the change in momentum per 
collision and the collision rate are each proportional to the 
velocity gradient. 

Since this work was completed, Savage and Jeffrey [20] 
have presented results for a statistical mechanical analysis of 
collisional momentum exchange in which the fluctuating 
motion of the particles about their mean translation is ex
plicitly accounted for. The mean shearing gives rise to shear 
and normal stresses quadratic in the velocity gradient, as 
discussed in the foregoing. The fluctuating part of the particle 
motion gives rise to an isotropic normal stress independent of 
the mean shearing, giving motivation to the pressure, p, 
introduced here. Note, however, that the volume fraction 
dependence predicted by the more complete analysis of 
Savage and Jeffrey [20] is different. In the limit of small v, 
they obtain stresses linear in v, whereas the model presented 
here predicts c2 dependence [equations (16) and (19)]. At 
larger v, their results are more realistic and predict 
magnitudes consistent with experimentally measured stresses. 

The boundary value problem for gravity flow predicts that 
the volume fraction of solids increases linearly downward 
through the flowing layer. The flow thickness is thus limited 
to the depth at which v reaches the maximum value for which 
continuous deformation can occur. The downward increase in 
v is less rapid with increasing slope, until at a critical slope v is 
uniform, and the maximum flow thickness is unlimited. 

Near the minimum slope, the velocity profile exhibits an 
inflection near the bed, because the velocity gradient must 
vanish as v increases in order that the stresses remain finite. 
As the slope approaches its maximum value for steady flow, 
and the grains are dilated across the entire layer, the velocity 
profile becomes fully convex downstream. 

Of particular interest in this model is the prediction of 
normal stresses, which have been noted experimentally by 
Bagnold [1] and Savage [19]. In the gravity flow problem, a 
nonuniform gradient of the normal stress balances the normal 
component of the body force (42), resulting in variation of v 
across the flowing layer. Other normal stress effects can be 
anticipated in granular materials, particularly in three-
dimensional flow. Indeed, Savage [19] has observed second
ary flows in a rectangular channel (cf. Green and Rivlin [6]). 
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Creep and Plastic Strains of 304 
Stainless Steel at 593°C Under 
Step Stress Changes, Considering 
Aging 
Nonlinear constitutive equations for varying stress histories are developed and used 
to predict the creep behavior of 304 stainless steel at 593°C (1100°F) under 
variable tension or torsion stresses including reloading, complete unloading, step-
up, and step-down stress changes. The strain in the constitutive equations (a 
viscous-viscoelastic model) consists of: linear elastic, time-independent plastic, 
time-dependent-recoverable viscoelastic, and time-dependent-nonrecoverable 
viscous components. For variable stressing, the modified superposition principle, 
derived from the multiple integral representation, and the strain hardening theory 
were used to represent the recoverable and nonrecoverable components, respec
tively, of the time-dependent strain. Time-independent plastic strains were 
described by a flow rule of similar form to that for nonrecoverable, time-dependent 
strains. The material constants of the theory were determined from constant stress 
creep and creep recovery data. Considerable aging effects were found and the ef
fects on the strain components were incorporated in each strain predicted by the 
theory. Some modifications of the theory for the viscoelastic strain component 
under step-down stress changes were made to improve the predictions. The final 
predictions combining the foregoing features made satisfactory agreements with the 
experimental creep data under step stress changes. 

Introduction 
The need for experimental creep studies under multiaxial 

stresses varying with time has been emphasized [1, 2]. Ad
vanced theories proposed suffer from a lack of experimental 
data to evaluate them. 

The experimental work in this field was reviewed in 
reference [3]. Preliminary study of 304 stainless steel 
(reference heat 9T2796) at 593°C (1100°F) was reported in 
[4]. A study of the microstructure of the same reference heat 
of 304 stainless steel over a wide range of temperature and 
stress was reported in [5-7], In recent papers [8, 9] creep and 
creep recovery data of the same 304 stainless steel was 
analyzed by using a viscous-viscoelastic model in which the 
strain was resolved into four components; elastic eE, time-
independent plastic ep, time-dependent recoverable 
viscoelastic eVE, and time-dependent-nonrecoverable viscous 
strain ev. Also, considerable aging effects were found [9]. 
From creep and creep recovery experiments under combined 
tension and torsion, the time and stress dependence of these 
components was evaluated for constant stress. 

In this paper, constitutive equations for changes in state of 
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combined tension and torsion are developed and used to 
predict, from the relations determined from constant stress 
tests in [8, 9], the creep and plastic behavior under abrupt 
step-up and step-down changes in tension or torsion including 
reloading and complete unloading. The results are compared 
with experiments reported in this paper. 

Future work will consider abrupt changes in the state of 
combined tension and torsion, and stress reversal in torsion 
with or without constant tension. 

Material, Specimen, Apparatus, and Procedure 

Type 304 stainless steel (reference heat no. 9T2796), 
supplied by Oak Ridge National Laboratory, was reannealed 
and tested at 593 °C (1100°F). The melting temperature was 
about 1407°C (2565°F). A more complete description of 
material and specimens is given in [4, 8, 9]. The combined 
tension and torsion machine used for these experiments was 
described in [10]. Some modifications for high temperature 
use were described in [8]. The testing procedure was described 
in [8, 9], 

Experimental Results 

Nine creep experiments including pure tension and pure 
torsion under step stress changes are shown in Figs. 1-9. The 
loading programs and resulting total strain-time data as 
measured are also shown as inserts in Figs. 1-9. 

Figure 1 shows the results of a pure-tension creep ex-
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Fig. 1 Test no. A43. Axial creep strain for pure tension creep of 304 
stainless steel at 593°C under complete unloading and reloading. 
Numbers 1-4 indicate periods on insert. Scales are X = 30h, Y = 0.02 
percent for periods 1 and 3, and X = 70h, Y = 0.01 percent for periods 2 
and 4. 

T IME, HOURS 
Fig. 3 Test no. T32. Shear creep strain for pure torsion creep of 304 
stainless steel at 593°C under complete unloading and reloading. 
Numbers 1-4 indicate periods on insert. Scales are X = 30h, Y = 0.03 
percent for periods 1 and 3, and X = 120h, Y = 0.01 percent for periods 
2 and 4. 
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Fig. 2 Test no. T29. Shear creep strain for pure torsion creep of 304 
stainless steel at 593°C under complete unloading and reloading. 
Numbers 1-5 indicate periods On insert. Scales are X = 33h, Y = 0.05 
percent for periods 1,3, and 5, and X = 200h, Y = 0.01 percent for 
periods 2 and 4. 
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Fig. 4 Test no. T35. Shear creep strain for pure torsion creep of 304 
stainless steel at 593' C under complete unloading and reloading. 
Numbers 1-4 indicate periods on insert. Scales are X = 25h, Y = 0.04 
percent for periods 1 and 3, and X = 80h, Y = 0.004 percent for periods 
2 and 4. 
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Fig. 5 Test no. A38. Axial creep strain for pure tension creep of 304 
stainless steel at 593 C under step-down stress changes following 
complete unloading and reloading. Numbers 1-6 indicate periods on 
insert. Scales are X = 30h, V = 0.25 percent for periods 1 and 3, and X 
= 55h, Y = 0.01 percent for periods 2 and 4-6. 
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Fig. 6 Test no. A39. Axial creep strain for pure tension creep of 304 
stainless steel at 593°C under step-up and step-down stress changes 
following complete unloading. Numbers 1-8 indicate periods on insert. 
Scales are X = 25h, V = 0.1 percent for periods 1 and 5, and X = 50h, Y 
= 0.01 percent for periods 2-4 and 6-8. 

periment and Figs. 2-4 show pure torsion experiments. These 
include complete unloading and reloading to a higher stress or 
lower stress than the first loading or the same stress, followed 
by complete unloading. 

Figures 5-9 show the results of pure tension (Figs. 5-7) or 
pure torsion (Figs. 8, 9) experiments consisting of multiple 
step changes of stress. The step changes included several steps 
of reloading and partial unloading or partial unloading and 
reloading followed by complete unloading. 

It is noted that periods 1 and 2 (creep and creep recovery 
data) of all the tests shown in Figs. 1-9 except test T47 (Fig. 8) 
were used to determine the constants of the constitutive 
equations at constant stresses in [8,9]. 

Constitutive Equations for Constant Stress 

By a viscous-viscoelastic model [8, 9] the total creep strain 
at constant stress was represented by the sum of four com
ponents; an elastic strain, efj, a plastic strain, e£, a viscoelastic 
strain, e.-f , and a viscous strain, ef. 

e*vt" (1) 

where efj, eft, ejj VE, and e,y v are all functions of stress. The 
time-dependent components, efjE and }j were well described by 
a power function of time with a constant exponent n for both 
components [8, 9]. 

The stress dependence of efj, ej}VE, and ej} v was described 
by a third-order multiple integral representation [11]. In
corporating the concept of limit stresses, the relation yielded 
the following forms for axial and shear creep strain under 
constant pure tension and pure torsion, respectively [8], 

en=F(<j)=Fl(°-°*)+F2(a-<j*)2+F3(<j-cj*)\ (2) 

e12 = G(T) = Gl(T-T*) + G2(T-T*)\ (3) 

g: 0.11172 
0 .6318 

103.4 103. U 

1 2 3 1 5 

0 337 478 620 907 
110 1108 69U 
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TIME, HOURS 

Fig. 7 Test no. A40. Axial creep strain for pure tension creep of 304 
stainless steel at 593°C under mixed step-up and step-down stress 
changes following complete unloading. Numbers 1-7 indicate periods 
on insert. Scales are X = 50h, Y = 0.1 percent for periods, 3-5, and X = 
60h, Y = 0.01 percent for periods 2,6, and 7. 
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where e,j, Fit and G, assume superscripts P, VE, or V ac
cording to whether plastic, P, viscoelastic, VE, or viscous, V, 
strains are being described; where a*, r*were the yield limits 
for efj and creep limits for eft VE and eft K; and where F(cr) = 
G(r) = 0, for - a * < ci < tr*, - r * < r < r*. The values a* 
and T* had a Mises' relation, i.e., a* = V3~ T*, and different 
values for each component. The values of a* and r* and 
material constants F, and G, were determined as given in 
Table 1 of reference [8]. Superscripts P, VE, and V were used 
to identify the constants for ef., e,1 , respectively. 

Recent experimental results [9] at low stresses (below the 
creep limits) showed that the time-dependent creep strain 
tyE and efj were not negligible, particularly at stress levels just 
below the creep limits. They had linear stress-strain relations 
up to stresses somewhat above the creep limits found in [8]. 
For convenience of representation, transition points aT or TT 

were introduced to divide the high stress region described by 
equations (2) and (3) and the low stress region described by 
linear relations as follows, 

en =-F(cr) = JF 0CT, a<aT 

£\2=G(T) = GQT, T<T7 

(4) 

(5) 

where the values of F0, G0,a
T, and TT for eft VE and ejj 

were determined as shown in the text of reference [9]. 

Constitutive Equations for Variable Stress 

Plastic Strain, t'ft: The instantaneous response (time-
independent strain) at each stress change in Figs. 1-9 con
sisted of the sum of the elastic strain ef, and the plastic strain, 
efj. The plastic strain occurs on initial loading when the stress 
level is above the yield limit as described in equations (2) and 
(3). On subsequent loading, plastic strain was considered to 
occur only when the stress was larger than the maximum of 
the previous stresses. The new plastic strain increment was 
determined as the amount of ep given by equation (2) or (3) 
minus the accumulated plastic strain up to that time of 
loading. That is, the stress-strain curve given by equation (2) 
or (3) was a flow rule for variable stresses under pure tension 
or pure torsion. For unloading or reloading to stresses less 
than the maximum of the previous stresses, only elastic strain 
was produced, a fact that was well supported by the ex
perimental results. For a review of plastic strain deter
mination see reference [13]. 

Viscoelastic Strain, e}jE: By the modified superposition 
principle (MSP) [11, 12] the viscoelastic strain for a varying 
stress is given by 

dfl<r(0,t-Q - J : 3ff(f) 
' * ( $ ) # , (6) 

where the strain at constant stress is given by e = / ( a , t). 
For a series of m steps in stress as in the present test 

programs, the strain was described by the following form 
from equation (6) 

e\E=FVE{ox)[t"-(t-txy>]+ . . . 

+ FVE(<jm_[)[(t-tm„1)"-(t-tm^)"} 

+FVE(om)(t-t„l„l)",tm_l<t. (7) 

Similarly, e\E was obtained by replacing FVE (a) by GVE (T) in 
equation (7). 

Viscous Strain, £,-,': The nonrecoverable (viscous) strain 
was described by a strain-hardening theory (SH). The (SH) 
relation for variable stresses has the following form for axial 
strain [14], 

1 2 3 U 5 6 

0 169 365 BB2 
96 266 160 

TINE, HOURS 

TIME, HOURS 

Fig. 8 Test no. T45. Shear creep strain for pure torsion creep of 304 
stainless steel at 593°C under mixed step-up and step-down stress 
changes followed by complete unloading. Numbers 1-6 indicate 
periods on insert. Scales are X = 25h, Y = 0.06 percent for periods 1, 3, 
and 5, and X = 25h, Y = 0.01 percent for periods 2,4, and 6. 
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Fig. 9 Test no. T47. Shear creep strain for pure torsion creep of 304 
stainless steel at 593°C under step-up and step-down stress changes 
following complete unloading. Numbers 1-8 indicate periods on insert. 
Scales are X = 50h, Y = 0.01 percent for periods 1-5, 7, and 8, and X = 
30h, Y = 0.03 percent for period 6. 
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Table 1 Total time-independent strain data 

. Test 
(Fig. no.) 

A43 
(Fig. 1) 

T29 
(Fig. 2) 

T32 
(Fig. 3) 

T35 
(Fig. 4) 

A38 
(Fig. 5) 

A39 
(Fig. 6) 

T3 
.2 
OJ 

O-i 

1 
2 
3 
4 

1 
2 
3 
4 
5 

1 
2 
3 
4 

1 
2 
3 
4 

1 
2 
3 
4 
5 
6 

1 
2 

Stress, 
a or r 

MPa 

47.8 
-47.8 

86.2 
-86 .2 

59.7 
-59.7 

49.8 
-49.8 

49.8 

49.8 
-49 .8 

39.8 
-39.8 

27.6 
-27.6 

27.6 
-27 .6 

86.2 
-86.2 
120.7 

-58.6 
-34.5 

27.6 

103.4 
-103.4 

ksi 

6.928 
-6.928 
12.5 

-12.5 

8.66 
-8 .66 

7.217 
-7.217 

7.217 

7.217 
-7.217 

5.773 
-5.773 

4.0 
- 4 . 0 

4.0 
- 4 . 0 

12.5 
-12.5 

17.5 
-8 .5 
-5 .0 
- 4 . 0 

15.0 
-15.0 

Strain, 
percent 

0.0434 
-0.0325 

0.1558 
-0.0585 

0.4147 
-0.0541 

0.0448 
-0.0447 

0.0448 

0.1940 
-0.0450 

0.0355 
-0.0368 

0.0272 
-0.0268 

0.0249 
-0.0248 

0.2085 
-0.0599 

0.9062 
-0.0406 
-0.0240 
-0.0184 

0.5499 
-0.0696 

Test 
(Fig. no.) 

A39 
(Fig. 6) 

A40 
(Fig. 7) 

T45 
(Fig. 8) 

T47 
(Fig. 9) 

•a 
o 
at 

OH 

3 
4 
5 
6 
7 
8 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 
7 
8 

Stress, 
a or T 

MPa 

34.5 
34.5 
34.5 

-34.5 
-34.5 
-34.5 

68.9 
-68 .9 
103.4 

-17.2 
17.2 

-68 .9 
-34 .5 

49.8 
-10 .0 

10.0 
-29 .9 

29.9 
-49 .8 

19.9 
-19 .9 

19.9 
7.7 

12.2 
10.0 

-29 .9 
-19.9 

ksi 

5.0 
5.0 
5.0 

- 5 . 0 
- 5 . 0 
- 5 . 0 

10.0 
-10 .0 

15.0 
- 2 . 5 

2.5 
-10 .0 

- 5 . 0 

7.217 
-1.444 

1.444 
-4 .33 

4.33 
-7.217 

2.887 
-2.887 

2.887 
1.113 
1.773 
1.444 

-4 .33 
-2.887 

Strain, 
percent 

0.0243 
0.0227 
0.0265 

-0.0234 
-0.0240 
-0.0234 

0.0918 
-0.0457 

0.3292 
-0.0111 

0.0118 
-0.0457 
-0.0236 

0.1596 
-0.0087 

0.0087 
-0.0264 

0.0267 
-0.0442 

0.0180 
-0.0174 

0.0175 
0.0071 
0.0299 
0.0910 

-0.0265 
-0.0176 

'[!>> (&(*-*) ]) 
ndi\" , (8) 

when the strain at constant stress is represented by efl 
=Fv(a)t". In equation (8) it was assumed, in accordance with 
the usual strain-hardening concept, that the same function 
Fv(a) applied for variable stress Fv[a(£)] as for constant 
stress Fv (a). 

For a series of m steps in stress the axial strain was 
described by the following form from equation (8) by em
ploying the Dirac delta function, 

t(l = {[FV(ol)]
u"(tl)+ • • • 

+ [Fv(om_1)]
i/"(t„ -t„. 2) 

+ Wv{om)Yln(t-tm^))\ tm_l<t. (9) 

Similarly, t\2 was obtained by replacing Fv{a) by Gv (T) in 
equation (8) and (9). 

Predictions by the Theory and Comparison With Ex
perimental Data 

In the present analysis, the time-independent strain and the 
time-dependent strain were treated separately for predictions 
and comparison with experimental data. 

The predictions of the time-independent strain (efj + e£) 
were made by the sum of the elastic strain (see [9]) and the 
plastic strain given by equations (2) and (3) as illustrated in the 
preceding section. The predictions of the time-dependent 
strain (ejj + iff) were obtained by the sum of equations (7) 
and (9). For example, the calculation of the time-dependent 
strain eH(() for the third step of a three-step sequence in pure 
tension with stress changes at t, and t2 are as follows, 

en(t)=FVE(o{)[t" -{t-h)"} 

+ FVE(o2){(t-tlY-(t-t2)"}+FVE(<j,)(t-t2)" 

+ {[Fv(<J1)]
w"ti + [Fv(o2)]

i/"(t2-t1) 

+ [Fv(a3)]
u"(t-t2)}", t2<t. (10) 

For comparison of the predictions by equation (10) with 
experimental data, the time-dependent creep strain data was 
extracted from the measured, total strain data as follows. 

The first datum, following the instantaneous response upon 
changing the stress, was usually observed several seconds 
after completion of the change in load. Thus an allowance 
was made for the strain occurring during this interval. For 
simplicity and consistency the allowance was the strain 
calculated from the theory, equation (10), as having occurred 
in the interval between the end of the instantaneous response 
following completion of the load change and the first data 
reading. This amounts to making the first data point and 
theory coincide at the time of the first data reading. Then the 
data for the time-independent strain at each stress change was 
obtained as the amount of strain change from the last data 
point of the previous period (just before load change) to the 
zero time data of the creep strain of the current period (just 
after load change) corrected as just described. The resulting 
time-independent strain data are shown in the fifth column of 
Table 1. The data for plastic strain shown in column 5, Table 
2, was obtained by the total time-independent strain minus the 
elastic strain. The predictions of time-independent plastic 
strain by equations (2) and (3) are also shown in column 8 
("prediction without aging") of Table 2. The data of the time-
dependent strain are shown using different ordinates for each 
period in Figs. 1-9. 

The theory curves predicted by equation (10) are shown as 
short-dash lines in Figs. 1-9. If the theory curves are the same 
as the other theory curves described later, only solid lines are 
shown. The data and theory curves for a given test period are 
plotted in the scales specified in the figure captions. Two 
different scales are used for different periods because the 
difference of strain magnitudes between periods are usually 

Journal of Applied Mechanics JUNE 1982, Vol. 49/301 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 2 Plastic strain 

Test 
(Fig. no.) 

A43 (Fig. 1) 
T29 (Fig. 2) 
T32 (Fig. 3) 
A38 (Fig. 5) 

A39 (Fig. 6) 
A40 (Fig. 7) 

T45 (Fig. 8) 
T47 (Fig. 9) 

Period 

3 
1 
1 
1 
3 
1 
1 
3 
1 
5 
6 

Stress, 
tror r 

MPa 

86.2 
59.7 
49.8 
86.2 

120.7 
103.4 
68.9 

103.4 
49.8 
12.2 
10.0 

ksi 

12.5 
8.66 
7.217 

12.5 
17.5 
15.0 
10.0 
15.0 
7.217 
1.773 
1.444 

Data," 
percent 

0.0976 
0.3610 
0.1492 
0.1503 
0.8247 
0.4801 
0.0452 
0.2594 
0.1148 
0.0189 
0.0820 

Aging 
time, 

ts,h 

366 
20 
20 
20 

312 
20 
20 

357 
20 

356 
404 

Plastic strain 
Aging 
factor, 

gP(ts) 

0.714 
1.000 
1.000 
1.000 
0.728 
1.000 
1.000 
0.716 
1.000 
0.716 
0.706 

Prediction 
without 
aging, 

percent 

0.1489 
0.3614 
0.1480 
0.1489 
1.1293 
0.4806 
0.0512 
0.4294 
0.1480 
0.0427 
0.1053 

Prediction 
with 

aging, 
percent 

0.1063 
0.3614 
0.1480 
0.1489 
0.8221 
0.4806 
0.0512 
0..3075 
0.1480 
0.0306 
0.0743 

"Data of plastic strain = total time-independent strain minus elastic strain. 

too large to be properly included in one plot. Scales are 
grouped for similar periods and some continuous periods. 
The time and strain axes of each period were arbitrarily 
shifted so that data of all periods could be shown in one plot 
without confusion. The data and theory curves are drawn so 
as to be matched at zero time of each period (as described 
previously) starting from the left end of the figure. For some 
continuous sequences of periods, such as periods 4-6, Fig. 5, 
the time-dependent strains are only connected for each period. 
The actual difference between the data and the prediction of 
the theory at the end of a given period may be determined by 
accumulating all the differences for each prior period. In the 
present analysis the comparison between theory and data are 
usually based on each individual period - rather than the 
accumulated effect. 

As shown in Figs. 1-9 and Table 2, the predicted strains 
without consideration of aging were much larger than the 
data, which indicated that aging effects should be included in 
the present analysis as found in [9]. 

Consideration of Aging 

In [9], aging effects were found to be considerable for all 
strain components except the elastic strain. The aging time-
strain relation was well represented by a power function, 
appearing as a factor inserted as a coefficient of each of the 
last three terms of equation (1), as follows, 

gp(ts) =1.4147 t,-0-"*, 

gVE(ts) =1.5197 tr0A3", 

gv(ts) = l.8293 fs-°-2016, 

(11) 

(12) 

(13) 

where gp(t.) = gvh(ts) = gv(ts) = 1.0 at t, = 20 h, ts is 
the aging time in hours at 593 °C (1100°F) from heating of the 
specimen up to the first time of loading. 

This method of treating aging was an approximation in that 
it did not account for the fact that aging occurred con
tinuously during each of the several creep tests from which the 
aging functions were determined. The viscoelastic strain 
component, eVE during creep was determined in [9] from 
recovery data following 100 h of creep. Since the amount of 
recovery strain following creep was considered to depend on 
the recoverable viscoelastic component accumulated during 
creep, the aging time for gVB(ts) was taken to be the time up 
to load application rather than the time up to unloading 
following creep. Therefore, in both gVE(ts) and gv(ts), ts 

was taken to be the aging time prior to start of the creep test. 
The same concept was used in the following analysis of creep 
data under multiple step changes of stress. 

Since all the present tests had about 20 h aging time at the 
test temperature before the initial loading, the aging factor 
g(ts) was taken equal to unity at ts = 20 h. And as the 

material constants were determined from the tests of 20 h 
aging, the results of 20 h aging were taken as reference. 

Several ways of including aging in the theory for changes in 
stress state were tried. The following yielded the best results 
for step changes in stress. For example, the calculation of e\E 

and efi for the third step of a three-step sequence in pure 
torsion with stress changes at tl and t2 are as follows, 

eff(t) = gVE(20)FVE(al)U"-(t-tlr) 

+ gVE(20 + tl)F
VE(a2)[(t-tx)"-(t-t2r} 

+ gVE (20+ t2)F
VE(a,)(t-t2)\ t2<t (14) 

eri(t)=gv(20 + t2)[{leri(t2)]Wn 

+ [Fv(o3)]l/nU-t2)}"-i?l(t2)]+eri(t2), (15) 

where 

^{ti) = gv(2Q + ti)\[[t\x(tl)Y'" 

+ [Fv(a2)]
w"(t2 - / , ) ) " - e r , U , ) ] + e r , U , ) , 

er,(^1) = g' /(20)[[F , /(<71)]1/^,)n . 

The predicted strains obtained by equations (14) and (15) are 
shown as long-dashed lines in Figs. 1-9. Equations (14) and 
(15) greatly improved the comparison with the data as shown 
in Fig. 1-9. Where the theory curves are the same as the other 
theory curves described later, only solid lines are shown. 

The additional plastic strain produced by reloading to a 
higher stress than the previous stress was calculated as in the 
following example, considering the aging effect given by 
equation (11). For step-up stress changes ox —• a2 (a*p < ox 

< a2) at t = tx, the new plastic strain Aefi was calculated as 
follows, using equations (2) and (3) with fixed yield limits 

tep
l=gp(20 + ti)U

P
u(o2)-e

p
n(<h)}. (16) 

The results are shown in the last column ("Prediction with 
Aging") of Table 2. 

Revision (RSP) of (MSP) for Partial Unloading 

From the comparisons of the theory with test data, shown 
in Figs. 1-9, substantial disagreements between theory and 
data were found for the cases of partial unloading as in period 
4 of Fig. 5, period 6 of Fig. 6, and period 2 of Fig. 8, where 
the creep data increased at a reduced strain rate, but the 
predicted strain decreased. The viscous strain given by 
equation (15) always predicts a positive strain rate. Thus the 
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disagreement was mainly due to the prediction of the 
viscoelastic strain by (MSP), equation (14), because equation 
(14) always predicts a decrease of eVE on partial unloading. So 
the (MSP) equation was revised (RSP) only for partial 
unloading cases using a closed form for stress changes. Both 
(MSP) and (RSP) predict the same result for full unloading. 
Among several modifications considered, the following (RSP) 
resulted in the best predictions. For example, modifying 
equation (14) including aging effects, for steps of partial 
unloading, a, > a2 > a3 > <J4, the revised superposition 
(RSP) yields, 

eW(t)=g{20)FVE(al)t"-g{20)FVE(a{-a2)(t-tir 

-g(20 + tl)F
VE(al-a,)(t-t2r 

-g{20 + t2)F
VE(cr2-a,){t-t,)". (17) 

In equation (17), a closed form F( CTJ — CT2) was used instead of 
an open form [F(ol)-F(o2)} as in equation (14). Also the 
aging effect was approximated as g(20)F(al - <J2) instead of 
(g(20) F(o1)-g(20 + tl) F(a2)} as in equation (14). For a 
series of partial unloadings as in the foregoing example, 
F(<f\ ~ai) was used instead of F(o2 - <r3) for the second step-
down. That is, the creep recovery for all but the first step-
down of a series of step-down stress changes was calculated 
on the basis of stress changes from one step before the 
previous step to the current stress as in F{ a2 — a^) of equation 
(17). Since the recovery strain depends on the accumulated 
viscoelastic strain during the prior creep periods, the ad
ditional reduction of stress during the second step-down could 
cause not only recovery from the current stress change but 
additional recovery from the initial creep, partially due to 
nonlinearity of the viscoelastic strain. Equation (17) resulted 
in reasonably good predictions in most cases for a series of 
step-down stress changes as shown by solid lines in Figs. 5-9. 
For example, see the solid lines in periods 4-6 of Fig. 5 and 
periods 6-8 of Fig. 6. 

Discussions on the Results of Analysis 

As shown in Figs. 1-9 (solid lines), the prediction from the 
mathematical expressions employed satisfactorily described 
the experimental data. For some curves, agreement would 
become very good to excellent by a vertical shift, as in period 
3 of Figs .1 ,5 , and 7, and periods 1 and 2 of Fig. 3. Reloading 
after a long recovery period to the same stress as the initial 
stress level (periods 3 of Figs. 4 and 9) yielded very good 
predictions. For reloading to a lower stress, the prediction for 
period 3 of Fig. 2 was quite good. But the data for period 3 of 
Fig. 6 showed more initial "primary type" creep than the 
prediction. The data for period 3 of Fig. 3 showed a larger 
creep rate than the predictions. Reloading to a higher stress as 
in period 3 of Figs. 1,5, and 7, yielded very good predictions 
if small vertical shifts were made. 

For step-down stress changes and partial unloading and 
reloading as in Figs. 5-9, the revised superposition (RSP) 
equation (17) yielded quite reasonable predictions. But for 
period 7 of Fig. 7, equation (17) predicted a much larger creep 
recovery than the data, when FVE (<r5 - <r7) was used for (RSP) 
and too small recovery when FVE (<r6 — an) was used. The data 
seemed to lie between the two. The prediction of (RSP) using 
FVE(a{_2 - a;) was satisfactory for periods 5-6 of Fig. 5 and 
periods 7-8 of Fig. 6, where the stress changes of several 
unloading steps were relatively small compared to the 
previous stress. However, the case of a small step-down stress 
following a large step-down was not well predicted by the 
(RSP), equation (17), as in period 7 of Fig. 7. A similar 
unloading occurred in periods 7 and 8, Fig. 9, with similar but 
not as pronounced a result. 

The predicted plastic strain ep with aging (Table 2) in 
periods 3, Figs. 1, 5, and 7, and periods 5 and 6, Fig. 9, 
differed from the actual plastic strain data by +8.5, -0.04, 
+ 18.7, + 62, and - 9.4 percent, respectively. Considering the 
nature of plastic flow, these predictions are probably 
reasonable. The tensile stresses exceeded the yield point a*p or 
the prior stress level for the first three of the foregoing by 
29.0, 34.5, and 34.5 MPa (4.2, 5, and 5 ksi), respectively. The 
largest stress occurred in period 3, Fig. 5. 

In Fig. 9, the shearing stresses in period 5 exceeded the yield 
stress T* by only 6.76 MPa (0.98 ksi) and the step increase in 
stress in period 6 was 9.9 MPa (1.44 ksi). It may be that the 
smallness of the stress accounts in part for the 62 percent 
larger predicted strain than observed in period 5. 

The reasonably close prediction to most of the data using 
equations (2) and (3) as a flow rule, suggests that the time-
dependent creep strain during the previous periods of creep 
recovery did not affect the subsequent plastic strain 
significantly. The plastic strain and the viscous creep strain 
are usually considered to be controlled by physically 
equivalent mechanisms such as dislocation slip and glide at 
room temperature [15], Since this may be partly right also at 
elevated temperature, there could exist some interactions 
between the two components tp and ev. 

Conclusions 

Analysis of creep data of 304 stainless steel at 593 °C 
(1100°F) under pure tension and pure torsion for varying 
stress history, including reloadings, step-up, and step-down 
stress changes showed that a viscous-viscoelastic model with 
certain modifications predicted most of the features of the 
observed creep behavior reasonably well. 

It was shown that the effect of aging must be included in 
predicting creep strains. A power function of aging time as a 
factor in each stress term produced reasonable results. 

For recoverable time-dependent (viscoelastic) strain step 
increases were described by an open form for stress dif
ferences whereas steps of partial unloading were described by 
a closed form for stress differences. 

Plastic (time-independent) strains were described 
reasonably well by a flow rule of form similar to that em
ployed for nonrecoverable time-dependent (creep) strains. 
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A Thermoelastic-¥iscoplastic 
Model With a Rate-Dependent 
Yield Strength 
General nonlinear constitutive equations for a thermoelastic-viscoplastic material 
that exhibits a rate-dependent yield strength are developed by assuming that the 
yield function depends explicitly on the total strain rate and temperature rate. 
Following recent developments in continuum thermodynamics restrictions on the 
constitutive response functions are imposed to ensure that the moment of 
momentum and energy equations are identically satisfied and that various 
statements of the second law of thermodynamics are satisfied for all ther-
modynamical processes. A particular constitutive equation for a thermoelastic-
viscoplastic material is proposed, and an analytical example is considered that 
examines the rate-dependent plastic response to a deformation history that includes 
segments of loading, unloading, and reloading, each occurring at varying strain 
rates. 

Introduction 

It is well known that many materials exhibit rate sensitivity 
in both their elastic and plastic response. However, some 
materials, such as titanium, are elastic-viscoplastic materials 
that exhibit less complicated behavior and are characterized 
by a strain-rate insensitive elastic response but a strain-rate 
sensitive plastic response [1]. Such elastic-viscoplastic 
materials also possess a rate-dependent yield strength.1 

Although previous constitutive models for elastic-viscoplastic 
materials include rate sensitivity in their plastic response they 
cannot model a rate-dependent yield strength. Therefore, the 
purpose of this paper is to develop a nonlinear constitutive 
model for a thermoelastic-viscoplastic material with a rate-
dependent yield strength that includes the simplifications 
associated with rate-insensitive elastic response. 

Situations often arise where it is essential to use a con
stitutive model that possesses a rate-dependent yield strength. 
More specifically, when the range of strain rate experienced 
by the material is large, the range of actual yield strength is 
also large and the yield strength cannot be adequately ap
proximated by a constant value. However, if the range of 
strain rate experienced by the material is small, the common 
rate-independent elastic-plastic theories (e.g., Green and 
Naghdi [2, 3]) can be used even though they cannot model a 
rate-dependent yield strength. This is because the variation of 
the actual value of yield strength in such a situation is 

By yield strength, we mean the strength of the material at the transition 
point between elastic and plastic material response. 
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relatively small, so the value of yield strength in the rate-
independent theories can be adequately approximated by the 
average value of the actual yield strength associated with that 
range of strain-rate [4, 5]. 

To contrast the developments of the present paper with 
previous developments, we recall some common constitutive 
models for rate-dependent plasticity. Malvern [6] considered 
the uniaxial deformation of a bar and introduced the over-
stress model for elastic-viscoplastic materials. This model 
admits the existence of a yield function and relates the rate of 
plastic strain to a function of "the excess of the instantaneous 
stress over the stress at the same strain in a static test." Within 
the context of the linearized theory, Perzyna [7] generalized 
the overstress model to include three-dimensional defor
mations. To summarize the generalization and to show that 
the overstress model does not possess a rate-dependent yield 
strength, we introduce a rate-independent yield function in the 
form2 

f_M/.*g) u (i) 

where a,y is the Cauchy stress tensor, eg is the plastic strain 
tensor, and K is a hardening parameter. The total strain rate e',y 
is assumed to be decomposed into an elastic part efj and a 
plastic part eg. Constitutive equations for this material may 
then be specified in the form3 

' C M i^+~ S8:, (2a,b) 

2 For convenience, we have retained the notation used by Perzyna [7]. 

The usual summation convention over repeated indices is used throughout 
the text. 
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efJ=y<<S>(F)>1r
L, K=K(WP), Wp = auefh (2c,d,e) 

day 

S = -r- omm, Sij = a,j - S5ij, (2f,g) 

where n is the shear modulus, E is Young's modulus, v is 
Poisson's ratio, 7 is a viscosity constant, and the symbol 
< $(F) > is defined by 

f 0 when F < 0 
< * ( F ) > H (3) 

[$(F) when F>0. 
The function ${F) characterizes the rate-dependent plastic 
response and requires a constitutive equation. In view of the 
equations (1) and (2) and the definition (3), we realize that 
when F < 0, the material exhibits rate-insensitive elastic 
response, and when F > 0, the material can exhibit rate-
sensitive plastic response. More important, we note that the 
overstress model does not possess a rate-dependent yield 
strength since plastic yielding always initiates when the rate-
independent yield function F = 0. This result is shown 
schematically by Fig. 1, which compares the constitutive 
response of the present model with that of the overstress 
model for loading histories of different total strain rates. 

Here, it is important to clarify some confusion that exits in 
the literature. Figure 1.4, p. 112, in Cristescu [8] and Figures 
18 and 19, p. 277, in Perzyna [7] suggest that the overstress 
model produces stress-strain curves more similar to the solid 
lines in our Fig. 1 than the broken lines. This, of course, 
cannot be accurate because we have just proved that the 
overstress model cannot model a rate-dependent yield 
strength. In fact, Malvern [6] states (p. 204) that; "The initial 
yield strain ey and yield stress ay = E0 ey have been con
sidered as constant for all finite strain rates in the applications 
that have been made of the present theory." The correct 
response of the overstress model is shown in Figure 1 of 
reference [6]. 

Constitutive models that possess a rate-dependent yield 
strength have been developed for viscoelastic-plastic materials 
that exhibit rate sensitivity in both their elastic and plastic 
response. For example, linear constitutive equations for such 
materials were proposed by Naghdi and Murch [9] and 
nonlinear constitutive equations were proposed by Green and 
Naghdi [10]. Although these developments can model a 
material with a rate-dependent yield strength if the material is 
rate sensitive in both its elastic and plastic response, they 
cannot be simplified to describe a material that has rate-
insensitive elastic response without losing the ability to model 
a rate-dependent yield strength. This is because the values of 
the arguments of the yield functions in these developments 
would be rate insensitive at the onset of yield from an elastic 
to a viscoplastic state. 

Another constitutive model for rate-dependent materials 
was proposed by Bodner and Partom [11] and is based on the 
assumption that the rate of deformation tensor dy is separable 
into an elastic part dy and a plastic part dy. The plastic rate of 
deformation tensor dfj is related to the stress through a flow 
rule of the form4 

dfj = d» = \aew, (4) 

where ay is the Cauchy stress and the bar indicates the 
deviatoric part of the tensors. Their development does not use 
a yield function to characterize loading from an elastic to a 
plastic state or unloading from a plastic to an elastic state. 
Instead, a constitutive equation for the function X in (4) must 
be specified in such a way as to allow their model to simulate 
these elastic-plastic transitions. Although Bodner and Partom 

Here, we have retained the notation used by Bodner and Partom [11]. 

Dynamic Yield Points 

\ \ _ 
\ / / ' • Increasing 
\J / Strain Rate 

P Quasi-Static 
l Loading 

Static Yield Point 

Present Model 

Overstress Model 

STRAIN 

Fig. 1 Sketch of the constitutive response predicted by the present 
model and that predicted by the overstress model for loading histories 
of different total strain rates 

[11] propose a constitutive equation for X that allows their 
model to simulate a material with a rate-dependent yield 
strength, they specify X to be a function that vanishes only 
asymptotically. This means that the material response is never 
truly elastic and that the values of the components of ay will 
approach zero asymptotically with time. 

In contrast to previous studies, we develop a nonlinear 
constitutive model for a thermoelastic-viscoplastic material 
with a rate-dependent yield strength by assuming that the 
yield function depends explicitly on the total strain rate and 
temperature rate. Because constitutive equations of all 
materials must be invariant under superposed rigid body 
motions and must satisfy certain thermodynamic conditions, 
we impose restrictions on our constitutive assumptions by 
using recent developments in continuum thermodynamics 
proposed by Green and Naghdi [12, 13]. After summarizing 
the basic equations and thermodynamic restrictions [12, 13], 
we develop general nonlinear rate-type constitutive equations 
for a thermoelastic-viscoplastic material with a rate-
dependent yield strength. Next, we develop an explicit set of 
constitutive equations that satisfy all thermodynamic 
restrictions. Then an example of homogeneous, isothermal, 
uniaxial strain is considered to explore the response of this 
material to a deformation history that includes segments of 
loading, unloading, and reloading, each occurring at varying 
strain rates. Finally, we close with a few concluding com
ments. 

Summary of the Basic Equations 

Consider a finite body with material points X and identify 
the material point X with its position X in a fixed reference 
configuration. A motion of the body is defined by a suf
ficiently smooth vector function \, which assigns position x 
= x(X, 0 to each material point X at each instant of time. In 
the procedure developed by Green and Naghdi [12], the usual 
balance laws for mass, linear momentum, moment of 
momentum and energy are supplemented by a balance law for 
entropy. Further, the moment of momentum and energy 
equations are assumed to be identities for all ther-
momechanical processes. For our present purpose, we need 
recall only the equations for the balance of entropy and the 
reduced form of the balance of energy, which may be referred 
to the reference configuration and represented, respectively, 
in the forms 

p0^ = p 0 ( s + ? ) - D i v P , (5a) 

-p0(i/-+r;f)) + S . E - p o ^ - P . G = 0, (5b) 

where p0 is the mass density in the reference configuration, 17 
is the specific5 entropy, .s is the specific external rate of supply 

The term specific is used to denote that the quantity is measured per unit 
mass of the body. 
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of entropy, £ is the specific internal rate of production of 
entropy, P is the entropy flux vector per unit area in the 
reference configuration, \p — e - dri is the specific Helmholtz 
free energy, e is the specific internal energy, 8 ( > 0) is the 
absolute temperature, S is the symmetric Piola-Kirchhoff 
stress, E = (F r F - I ) / 2 is the Lagrangian strain, F = dx/dX is 
the deformation gradient, E is the total strain rate at time t, 
where a superposed dot denotes material time differentiation 
holding X fixed, and G = dd/dX is the temperature gradient 
with respect to the position X. The divergence operator Div in 
(5a) is defined with respect to the position vector X. Fur
thermore, we recall that the specific external rate of heat 
supply r and the heat flux vector Q per unit area of the 
reference configuration are related to s and P through the 
expressions 

r = 6s, Q = 0P. (6a,b) 
As in [12], the response functions for e, -q are assumed to 

include dependence on the set of variables F, 8, G and their 
higher space and time derivatives, and this set collectively is 
referred to as V. Further, let the quantities e', r/' denote the 
respective values of e, i) when the set V is set equal to zero in 
the response functions. Thus, for example, 

e = e(¥,8,V), e '=e '(F,0) = e(F,0,O). (7a,b) 

It follows from [13] that a statement of the second law of 
thermodynamics may be expressed in the form 

PoW*=-po0(>i-V) + Po0£ + P-G>O. (8) 

The inequality (8) is supplemented by two additional 
statements of the second law [12], which may be written as 

- Q . G > 0 , (9a) 

0(0 - 6(tx) > 0 whenever e(t) - e(tx) > 0. (9b) 

The inequality (9a) is the classical heat conduction inequality 
and is adopted for all equilibrium processes, whereas the 
inequality (9b) is adopted when the continuum is in a state of 
rest and the temperature is spacially homogeneous. The time 
/[ in (9b) is constant. 

A Thermoelastic-Viscoplastic Model 

In this section, we propose constitutive equations for a 
thermoelastic-viscoplastic material with a rate-dependent 
yield strength. To a certain extent, the nonlinear equations of 
rate-type proposed here follow previous developments for 
thermoelastic-plastic materials (see [14]); however, they differ 
from previous developments in that the yield function is 
assumed to depend explicitly on the total strain rate E and 
temperature rate 6. It therefore is necessary to examine this 
new constitutive assumption within the context of the 
procedure and thermodynamic restrictions that were sum
marized in the preceding section. 

At each point in the continuum, we admit the existence of a 
plastic strain specified by a symmetric second-order tensor 
Ep, a measure of work-hardening specified by a positive 
scalar function K, and a scalar-valued function6 y, called the 
yield function, which is assumed to depend on the variables7 

IE,EP,0,K), {E,8} (10B,*) 

and which at yield satisfies the equation 

y(E,Ep,8,K,E,e) = 0. (11) 

Further, the yield function y is assumed to be continuously 

6 The yield function y should not be confused with the use of the same symbol 
in the Introduction. 

7 Here, it is convenient to use a strain-space formulation of plasticity instead 
of a stress-space formulation. For a discussion of the significance of for
mulating plasticity theory in strain-space, see Naghdi and Trapp [15], 

differentiable with respect to its arguments. For the con
stitutive model under discussion here, we assume that8 

E„=H 

S = S(E,EP,6,K), 

¥ = P(E,EP,6,K,G), 

0 during elastic response (7 < 0), 
0 during unloading (7 = 0 and 7 < 0), 
0 during neutral loading (7 = 0 and 7 = 0), 

jxAy during loading (7 = 0 and 7 >0), 

K = M . E „ , 

where 

1 dE dd 8E dd 

(12a) 

(12b) 

(13a) 

(13*) 

(14) 

In the foregoing expressions /x, A, and M are functions of the 
variables (10a) and (10*), with A and M being symmetric 
second-order tensors, and the quantities E, Ep, 8, K, G, S, 1//, s, 
r), P, 7, p., A, M, £ are unaltered under superposed rigid body 
motions. Response functions for the quantities \p and 17 are 
assumed to take the same form as those for S in (12a). Taking 
the material time derivative of the yield criterion (11) and 
using the expressions (13) and (14), we may conclude that 
during loading, the quantity9 /j, must satisfy the equation 

l + /xA« 
dEp 3K / 

= 0. (15) 

Furthermore, we can assume without loss in generality, that 

li>0. (16) 

The constitutive assumptions (12) and (13) must be sup
plemented by appropriate assumptions for the rate of supply 
of entropy £. For the thermoelastic-viscoplastic material 
under discussion, we suppose that £ is prescribed by an 
equation of the form 

t=.S1(E,Ep,0,K,G) + JW,Ep,0,K,G,E,6,E,8)-Ep (17) 

where £ is a symmetric second-order tensor function of its 
arguments and is unaltered under superposed rigid body 
motions. 

Following the procedure described in [12] restrictions on 
the constitutive assumptions may be obtained by demanding 
that the energy equation (5*) is an identity for all ther-
momechanical processes. Substitution of the constitutive 
assumptions into (5*) yields the equation 

-PO(~ +v)o+(s-Po^yE-p0^e-V'G 

)-Ep=0. 
/ d\L> d\b 

(18) 

At any point in an arbitrary thermomechanical process, the 
values of the variables (10a,*) are arbitrary to the extent that 
7 < 0 and the constitutive equations (13a,*) have been 
satisfied. Hence for any fixed, but arbitrary, values of the 
variables (10a), we may vary the values of E and 8 in
dependently while maintaining the condition that Ep = 0. 
This is because either 7 < 0 or 7 = 0 and we may assume that 
not all components of 97/3E vanishes and thus may choose E 
so that 7 < 0 and Ep = 0. In either case, Ep = 0 and (18) 
reduces to 

-i°o (dO +V)°+ (S-Po-^)'i-Po^e-P'G = 0.(l9) 

It follows that we are free to specify the values of E and 6 

Explicit dependence of the response functions on the material point X can 
be included but it is suppressed for convenience. 

The function n introduced in (13a) should not be confused with the use of 
the same symbol in the Introduction. 
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independently in equation (19). Since the coefficients of 8 and 
E in (19) as well as the response functions £i and P are in
dependent of the rates 6, E, we may conclude that 

30 
= Po dE' 

Po^e = P-G (20a,V) 

must hold for all possible values of the variables (10a) and the 
variable G. Furthermore, the moment of momentum equation 
is automatically satisfied by the response function (206) since 
\p is a function of the symmetric tensor E. 

The restrictions (20) were derived for processes for which 
Ep = 0. However, at any point for which y = 0, we may 
choose E so that Ep = 0 or Ep T± 0 without affecting the 
values of the expressions (20), since (20) are independent of 
rates. It follows that the expressions (20) must hold for all 
thermomechanical processes. Hence, with the help of (13) and 
(20) we may conclude that during loading, the expression (18) 
reduces to 

(W# + ^ M 
9E„ dK 

:VA = O. (21) 

If we now appeal to the inequality (8) and use (7), (13«), (17), 
(20), and (21), we obtain 

/ 3^ 3i/< 

A 3E„ 
- M ) . A 7 > 0 (22) 

whenever JX > 0 and y > 0, so that 

3i/< 
MVA<0. (23) ( H_ 

\ dEp
 +

 8K 

Although further restrictions on constitutive equations are 
demanded by the inequalities (9a) and (9b), these cannot be 
exploited until explicit response functions are supplied. 

It is interesting to note that the response functions \p, ??, S, 
£i of the thermoelastic-viscoplastic material under discussion 
have the same form as those of a thermoelastic-plastic 
material (see [14]). The rate-dependent plastic response of this 
thermoelastic-viscoplastic material arises merely through the 
rate-dependence of the yield function y and the expressions 
for the quantities Ep, k, and S. 

A Particular Constitutive Equation for a Thermoelastic-
viscoplastic Material 

The development in the preceding section was intended to 
be general and therefore did not propose an explicit set of 
constitutive equations. In this section, we propose nonlinear 
constitutive equations for a thermoelastic-viscoplastic 
material and develop a set of response functions that satisfy 
all the constitutive restrictions demanded by the ther-
modynamical procedure of Green and Naghdi [12, 13]. 

For this discussion, it is convenient to refer all tensor 
quantities to a fixed set of Cartesian base vectors eA (A = 1, 2, 
3). For example, we let XA be the coordinates of the material 
point X and let EP

AB be the components of the plastic strain 
tensor E^. Recalling the constitutive restrictions (20) and (21), 
we note that once constitutive equations are provided for xp, 
P, 7, A, M, the response functions r/, S, and £ are determined. 
Therefore, let us specify the Helmholtz free energy i/> and 
entropy flux PA in the forms 

* = y CABCD(EAB -EPAB)(ECD -E"CD) 

+ CAB{.EAB-EAB)-6DAB(EAB-EAB)-Dl8-

KARGB 

(24a) 

D26\ 

(246) 

where D, and D7 are constants and the constant tensors 

"i : i ~ i 
E,,--1.65« lOV 1 

— ,£,,= -2.01 x IC'V / I 

. ,E„=-9.35x l i rV1 

A \ A 

0 -0.02 -0.04 -0.06 -0.08 -0.10 

1 

-

1 1 

I l \ 

1 1 

1 

III 

1 

(b) 

Fig. 2 (a) Solution for the deformation described by equation (48) for 
the elastic segments (—) and the viscoplastic segments(-); (b) strain 
rates E^ corresponding to the viscoplastic segments. 

CABCD> CAB, DAB, KAB have obvious symmetry properties. 
The specific nonlinear constitutive equations (24) were chosen 
mainly because their forms are similar to those of the usual 
constitutive equations for linear thermoelastic-plastic 
materials [2]. Next, we would like to propose a yield function 
that has a Von-Mises form. For simplicity, we will include 
dependence of the yield function on total strain rate EAB, but 
exclude dependence on temperature 6 and temperature rate 6. 
Hence, we specify10 

y = Ji-W + g(z)]2 (25) 

where J{ is related to the deviatoric part TAB of the symmetric 
Piola-Kirchhoff tensor SAB through the formulas 

Ji = -r- TABTAB, TAB=SAB——SMM5AB, (26a,b) 

and where the rate dependence of the yield function (25) is 
characterized by the nonnegative function g(z), which is 
specified by 

g = B tanhz, z = Cln(l+ — BABCDEABECDJ (27a, 6) 

fi>0, C > 0 , BABCDEABECD>:0 {21c,d,e) 

with B and C being constants, BABCD being a constant tensor 
with obvious symmetry properties, and 6AB being the 
Kronecker delta. In view of (11), the representation (25) and 
the assumption that K is positive and g(z) is nonnegative, we 
realize that during loading and in particular at the onset of 
yield 

(Ji)'/2 = [K + g(z)]. (28) 

10The Von-Mises form of the yield function is generally written as a function 
of stress [see expression (25)] instead of strain as in (11). Since our basic 
developments utilize a strain space formulation of plasticity, it is necessary to 
represent the function (25) in the form (11) when determining the quantity y 
that characterizes loading. 
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It follows from (27) and (28) that the material under 
discussion possesses a rate-dependent yield strength since a 
nonzero value of EAB has the effect of instantaneously in
creasing the yield strength. Although the function g(z) 
specified in (27) is chosen somewhat arbitrarily, it models the 
fact that at very high strain rates, the yield strength of some 
materials asymptotically approaches a finite limit ([7], Fig. 2, 
p. 248). The function g(z) can, however, be determined ex
perimentally and a procedure for doing this is outlined at the 
end of the next section. 

For a complete description of the material under 
discussion, it is necessary to specify constitutive equations for 
the quantities AAB andMAB given in (13a) and (13b). Thus we 
t a k e " 

PrAn 
A A B = TAB, MAB=- (29a,b) 

( l - » 

dy 
rMNTMN 

where (3 is a constant that controls the amount of hardening. 
Let us now assume that in the reference configuration, the 

material is homogeneous and isotropic and that 

0 = 0 O , SAB=0, EAB=0, EAB=0, K=K0 (30a,b,c,d,e) 

where 0O and K0 are positive constants. It follows from (20b), 
(30), symmetry properties, and the condition of isotropy that 

C/lflCD = C] 8AB8CD + C2(8AC8BD + ?>AD&Bc), (31«) 

CAB = d0D8AB, DAB = D8AB, KAB=k8AB, (3\b,c,d) 

BABCD = B\8AB8CD + B2(8AC8BD + 8AD8BC), (31e) 

where C , , C2,D, k, 5 , and B2 are constants. Substituting (31) 
into (24) and using the constitutive restrictions (20), 
response functions may be represented in the forms 

the 

+ -- CX(EA EP
BB) 

2poC2TABTAB 

i = 2p0C2TABEAB~2[K + g(z)]g, 

Ep
AB=0, 

k = 0, 

EABE'AB = 0> 

(33*) 

(33c) 

(34a) 

during elastic response, unloading, 
or neutral loading (346) 

(34c) 

™ (1-P)TAB . . 
EPAB= r— 7, 

z P0 L 2 r A*V 7 ~A*V 

7. 

^AREP
A 

2[K + g(z)} " 

U - / 3 ) 

during loading 

(35a) 

(35b) 

(35c) 
W Q . 0 

and from (27b), (21 e), and (31e) that 

z = Cln(l+ —B,EAAEBB+B2EABEAB^ (36a) 

5 , + - 5 2 > 0 , 5 2 > 0 . 06b,c) 

Now by comparing the response of the material defined by 
(32c/) with that of a linear thermoelastic solid12 (see [16], p . 
359), the constants C , , C2 and D can be identified. It follows 
that 

+ C2(EAB-EAB)(EAB-EAB) 

-e0)D(EAA-E'AA)^Dle- y £ > 2 0 2 , 

e=-Cl(EAA-EAA)(EBB-EBB) 

+ C2(EAB-E'AB)(EAB-E'AB) 

+ B0D(EAA-EPAA)+~D2e\ 

V = D{+D28 + D(EAA-EAA), 

•j/ifl = Po [C[ (EMM — EMM)8AB 

+ 2C2(EAB-EAB)-(8-60)D8AB], 

kGA kGAGA 

—7T~ ' ?l 
Pod2 

(32a) 

(32b) 

(32c) 

Q2d) 

(32e, f) 

Furthermore, it follows from (13-15), (21), (25), (26), (29), 
and (32) that 

TAB = 2P0C2[(EAB-EAB)- y (EMM-Ep
MM)8AB], (33a) 

PQC\ = 
vE 

(\ + v)(\-2v) 
PoC2 = PoD--

2(1 + v)' "" ( l - 2 c ) 

(37«Ac) 

where E is Young's modulus, v is Poisson's ratio, and a is the 
thermal coefficient of linear expansion. 

Once the constants 

[E , v,K0,P,B,BuB2,C,dQ,a,k,Dx,D2} (38) 

are specified, the constitutive nature of the material under 
discussion will be known. The constants (38) cannot, 
however, be chosen totally arbitrarily. In particular, we recall 
the restrictions (21c,d) and (36Z?,c) as well as the usual con
ditions 

E > 0 , • 1 <v< 
1 

(39a,b) 

which arise by making physical assumptions about the 
response of a linearly elastic solid during simple tension, 
simple shear, and hydrostatic compression. Addit ional 
restrictions on the constants (38) may be deduced by imposing 
the thermodynamic conditions (9a), (9b), and (23). With the 
help of (6b), (29a), (32), (33*), (37), and (39), the condition 
(23) is automatically satisfied and the inequalities (9a), (9b), 
and (16) reduce to 

k>Q, D2>0, ; 3 < 1 . (40a,b,c) 

Finally, we make the usual assumption for work-hardening 
materials that k is non-negative and deduce from (35ft) and the 
fact that K is positive and g is non-negative that 

By using appropriate expressions for TAB, we can rewrite the expressions 
AAB andMAB in terms of the variables (10a,b). 

12 Recall that in the linear theory, there is no distinction between the Cauchy 
stress and the symmetric Piola-Kirchhoff stress S. 
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/3>0. (41) 

With the help of the expressions (7), (8), (17), (32), and (35) 
and the restrictions (39) and (40a,c), it is interesting to note 
that during loading 

w*>0, £>0 . (42a,b) 

The conditions (42a,b) are consistent with the notion that 
plastic deformation is a dissipative process. 

An Example of a Uniaxial Strain Process 

In this section, we consider a uniaxial strain process in 
which a bar is compressed13 axially but not allowed to deform 
laterally. Furthermore, we require the process to be 
homogeneous and isothermal. For such a process, we specify 

xl=a(t)Xt, x2=X2, X)=X}, e = 60, (43a,b,c,d) 

where a is a function of time only, 0o is the constant tem-
perture, and where the vectors x and X are referred to the 
same set of fixed Cartesian base vectors. Although this 
process may be impossible to produce experimentally, it 
allows us to analytically examine some of the important 
features of the thermoelastic-viscoplastic constitutive model 
described in the preceding section. Now with the help of (25), 
(32-37), and (43), we may deduce the results 

1 , 
2 ( " 2 " 

T] | = - 2r22 = - 2T 3 3 = 2p0 C2 

3 

i = 2p0C2TuEu -2[K + g(z)]g, 

(44a) 

(44b) 

(44c) 

(44d) 

(44e) 

m, 3po C2TU 

0 
2[K + g(z)] 

7 during loading, (44f,g) 

Z=Cln[\+BiE
2
u], Bi=~Bl+B2>0, (44h,i) 

where #3 is a constant and where we have identified the 
reference configuration as the initial configuration and have 
used the conditions (30). The remaining components of EAB, 
TAB and EP

AB all vanish. Since K is positive and g(z) is non-
negative, it follows from (11), (44d), and (44e) that during 
loading r n is nonvanishing so we may write 

/ 4 \ 1/2 

7^ = ^^-) [K + g(z)], (45a) 

y=[K + g(z)] 
/ 4 \ 1 / 2 . 

±2p0C2(^J Et -2g »]• 
y=-Tn[-2PoC2Eu±(3)U2g]. 

(456) 

(45c) 

With the help of (456) and (45c), the equations (44/) and (44g) 
may be reduced to the forms 

E"u = ~ (^~^[-2p0C2En ±(3)1/2g] (46a) 
3p0C2 

K = ± ( ^ ) ( 3 ) - £ f „ (466) 

where the plus sign is used in the expressions (45) and (46) if 
rn is positive during loading and the minus sign is used if TU 

is negative during loading. 

It is now apparent that the equations (46a) and (46b) may 
be integrated and the quantities SAB, EP

AB, and K determined 
analytically for arbitrary specifications of a(t) in (43a) and the 
non-negative function g(z) in (25). Of course, for the balance 
laws to be satisfied for an arbitrary specification of the 
homogeneous, isothermal process defined by (43), the specific 
body force and specific external rate of entropy supply must 
be specified appropriately. Keeping this in mind, we consider 
an example that examines the constitutive response of our 
thermoelastic-viscoplastic model to a deformation history 
that includes segments of loading, unloading, and reloading, 
each occurring at varying strain rates. 

For the purposes of this example, we specify the material 
properties in a somewhat arbitrary manner and take14 

E=120GPa, >/= 0.4, K0=0.7GPa, 0 = 0.02, 

B = 0.35GPa, S3 = l x l 0 1 2 5 - C = 5 x l 0 - (47) 

Furthermore, the function a(t) in (43) is specified in the form 

a ( 0 = l - « i ( l - e " a 2 ' ) + «3 ( l - e - o 4 ' ) 

- a 5 ( l - e - " 6 ' ) + a 7 ( l - e - " 8 ' ) - a 9 r (48) 

where 

a, =0.04, a2 = 10005-

= 0.04, a 6 = 0 . l 5 - ' , 

a3 =0.0145, a4 = 105-

a7 =0.0145, as = l x l 0 -

ao = l x l 0 - 7 s (49) 

The solutions for the elastic segments of this example are 
obtained by merely using the expressions (37), (44), (47), and 
(48) with EP

AB being constant, whereas the solutions for the 
viscoplastic segments are obtained by using the expressions 
(27a), (37), (44), (47), and (48) as well as the equations (46) 
(utilizing the minus signs). In addition, the yield point 
associated with each viscoplastic segment is determined by 
calculating the time at which the value of the yield function 7 
changes from being negative to being zero. The transition 
point between viscoplastic loading (7 = 0 and 7 > 0) and 
elastic unloading (7 < 0) is called neutral loading and is 
determined by calculating the time (during each viscoplastic 
segment) at which 7 = 0 and 7 = 0. The solution of this 
example is shown in Fig. 2(a) where the quantity (J2)

U2 is 
plotted verses strain E u . Also indicated in Fig. 2(a) are the 
strain rates Eu at the yield points, the initial value of K and 
the value of K at the end of each viscoplastic loading segment 
of the process. The elastic segments are denoted by dashed 
lines while the viscoplastic segments I, II, and III are denoted 
by solid lines. Since this deformation is occurring at varying 
strain rate, we have also plotted in Fig. 2(b) the strain rate Eu 

versus strain E u for the viscoplastic loading segments I, II, 
and III. For this example, it can be shown that the transition 
point between viscoplastic loading and elastic unloading can 
be determined by requiring 7 = 0 and En = 0 instead of 7 = 
0 and 7; = 0. The extent to which we have satisfied the con
dition Eu = 0 at this transition point is represented by the 
end points of the viscoplastic segments shown in Fig. 2(6). 

This example clearly exhibits the fact that the value of 
(72)1/2 can exceed the value of K during viscoplastic loading at 
high strain rates. In this example, the magnitude of the strain 
rate in the viscoplastic segments monotonically decreases with 
increase in strain. Therefore, during viscoplastic loading, the 
value of K is increasing whereas the value of g(z) is decreasing. 
Since equation (28) must be satisfied during viscoplastic 
loading, we realize that these effects complete with each 
other. In this regard, we point out that near the ends of the 
viscoplastic segments I and II in Fig. 2(a) strain rate effects 
dominate and the curves have steep slopes. The shapes of 

13 This process should not be confused with a standard compression test, 
which maintains uniaxial stress instead of uniaxial strain. 

Since we are mainly interested in examining the mechanical response of the 
model and are not solving the balance laws, no specification is made for the 
quantities p 0 , 60, a, k, D j , and D2 . 
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these transition regions (from high strain rate to low strain 
rate) are very similar to the shape of the experimentally 
determined transition region reported by Bodner and Partom 
([11], Fig. 4, p. 388) for uniaxial stress tests. Furthermore, we 
note from equation (28) and the form of g(z) given by (27) 
that when the material is loaded quasi-statically (En — 0 and 
g(z) = 0) from an elastic state to a viscoplastic state yield 
occurs when the value of (/2) l /2 equal the current value of the 
hardening parameter. This fact is also exhibited by the yield 
point of the viscoplastic loading segment III shown in Fig. 
2(a). 

Since strain-rate effects dominate in the transition regions 
described in the foregoing, the quantitative characteristics of 
this transition are controlled to a large extent by our choice of 
the function g{z) in (27). In this regard, we would like to 
briefly discuss how experimental data may be used to 
determine the constitutive constants and functions that 
characterize the mechanical response of the thermoelastic-
viscoplastic model described in this paper. Apart from the 
usual determination of the material constants E and v, we 
need to determine the initial value of the hardening parameter 
/co! the constant /3, which controls the amount of hardening; 
as well as the function g(z), which characterizes the rate-
dependent yield strength of the material. From a single 
uniaxial stress experiment conducted under quasi-static 
loading conditions, it is possible to determine the value of K0 

by measuring the yield strength and the value of /3 by 
measuring the slope of the stress-strain curve in the 
viscoplastic segment. To determine the function g(z), it is 
necessary to conduct a series of experiments at various strain 
rates. The function g(z) may then be determined by using 
equation (28) (with K = K0) and plotting the measured values 
of (J2)

w2 at yield against the imposed strain rates. 

Conclusions 

A nonlinear constitutive model for a thermoelastic-
viscoplastic material with a rate-dependent yield strength is 
developed using recent advances in continuum ther
modynamics. In contrast with other constitutive models for 
materials with rate-sensitive plastic response, the model 

developed in this paper incorporates the simplifications 
associated with rate-insensitive elastic response without losing 
the ability to model a rate-dependent yield strength. 
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An Integral Equation Approach to 
the Inclusion Problem of 
Elastoplasticity 
An integral equation approach is derived for the calculation of the elastoplastic 
strain field associated with a transformed inclusion of constant stress-free trans
formation strain and for an inhomogeneity when the far stress field remains elastic. 
The assumptions of a coherent precipitate and the deformation theory of plasticity 
are employed although any yield condition and flow rule can be chosen. The 
complexity of the integral equation is such that an iterative solution scheme is 
necessary. The technique is applied to a spherical precipitate in a uniform elastic 
stress field where associated stress and strain fields and plastic zone are calculated. 
The nature of the plastic relaxation process compares qualitatively with two-
dimensional plane stress behavior. Extension of this technique to the 
nonaxisymmetricproblem is also examined. 

1 Introduction 

The elastoplastic deformation of the matrix surrounding 
misfitting precipitates can lead to substantial decreases in the 
energy of the system and profound changes in the associated 
stress fields. These changes in turn can cause substantial 
modification in a number of physical and mechanical 
properties of the material. Solutions to inclusion problems in 
elastoplasticity are usually complex, especially for the three-
dimensional problem. If radial symmetry exists, then 
relatively simple expressions can be obtained for the stress, 
strain, and the strain energy associated with a misfitting 
spherical precipitate [1, 2]. However, most cases do not 
exhibit radial symmetry and recourse must often be made to 
plane stress or plane strain assumptions. 

A number of approximations have been employed to model 
the stress distribution in the vicinity of an ellipsoidal in
clusion. The simplest approaches, such as those due to 
Shibata and Ono [3] and Tanaka and Mori [4] treat the stress 
field as a superposition of an inhomogeneity term and a 
plastic deformation term when an ellipsoid of revolution is 
subjected to a uniform stress field. Although this approach 
can be used successfully in work-hardening theories, such a 
formulation might be a poor approximation since it is based 
on the superposition of stress fields. More often, when in
formation is needed on the development of a plastic zone in 
the vicinity of a precipitate, recourse is made to the two-
dimensional plane stress case. Here several analytical 
solutions exist for rigid cylindrical inclusions embedded in 
matrices exhibiting Ramberg-Osgood type strain hardening 
[5] and ideal plasticity [4]. Argon, Im, and Safoglu [6] 
compare the analytical approximations with a finite-element 
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Fig. 1 Schematic representation of a precipitate and associated 
plastic zone. Notation employed in development of the elastoplastic 
integral equations is also shown. 

approach and use the results to predict cavity nucleation at 
rigid spherical precipitates. When the cylindrical inclusion is 
considered to be a cavity, series approximations to the 
displacement and stress are also obtainable using stress 
function and perturbation methods [7, 8] and energy methods 
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[9]. The techniques of plane stress plasticity, however, are not 
readily extendable to the three-dimensional problem. 

In this study, we formulate an integral approach to the 
inclusion problem of elastoplasticity. Two independent in
tegral equations are derived. The first concerns the 
displacement field associated with a precipitate possessing a 
constant stress-free transformation strain. The second in
tegral equation defines the displacement for an 
inhomogeneity problem for an applied stress field that is 
constant and is less than the yield stress. Since the resulting 
integral equations are quite complex, an iterative solution 
scheme is employed. The technique is illustrated by ap
plication to the case of a relatively hard precipitate in a 
uniform stress field. 

2 Development of Elastoplastic Integral Equations 

In dealing with the elastoplastic inclusion problem, we 
assume that, for simplicity, the inclusion remains elastic and 
thus plastic deformation occurs only in the matrix adjacent to 
the inclusion. Furthermore, the plastic relaxation is assumed 
to be independent of strain rate and stress orientation. The 
inclusion-matrix interface is taken as coherent, and defor
mation theory is assumed as is infinitesimal continuum 
theory. The displacement, uk, and total strain, ekl, are related 
by 

1 
«*/(*')= 2 ("*,/(*')+ "/,*(*'))• (1) 

The comma denotes differentiation with respect to x'k. For 
deformation-type plastic behavior, the total strain is equal to 
the sum of the elastic, e?, and plastic, eg, strains, i.e., 

ekl(x') = eUx') + 4,(x'). (2) 

For an elastoplastic system to maintain static equilibrium, 
the equations of equilibrium must be satisfied identically at 
every point. Making reference to Fig. 1 depicting the 
geometry of the problem and the notation employed, the 
equations of equilibrium can be expressed as 

C?jicibki(x')-e%,(x')],j = 0 if x' in precipitate (3) 

Cjjki[eki(x')-ep
kl(x')],j=0 if x' in matrix (4) 

where Cljkl and C*jkl are the elastic constants of the matrix and 
precipitate phases, respectively. Equations (3) and (4) can be 
combined into one equation as [10, 11] 

Cijk/Uk,lj(x')= [C jjki — C jjkl(x' )\U k jj(x') 

+ Cijkl(x'Mu(x') (5) 

where 

Cjjkiix') = Cijki if x' in matrix 

Cijkl(x') = C*jkl if x' in precipitate. 

We can define the operator 

D,i-CUkldx!dxk' (6) 
from which the elastic Green's function, Gim(x — x') can be 
defined as 

D„ G„„ (x - x') + 5„„ 8(x - x') = 0 (7) 

where 8lm is the Kronecker delta function and 5(x — x') is the 
Dirac delta function. A solution for the displacement can be 
obtained by multiplying equation (5) by Gjm(x-x') and 
equation (7) by u,{x') and then subtracting equation (7) from 
equation (5). Integrating the resultant expression over all 
space with respect to 5c', the following integral equation is 
obtained for the displacement 

"mix) = ttj[G„,/(.x-*')£>,,«,(*') 

- u,(* ')D„G ; B I(*-x ')]<m*') 

+ HI [Cijkl(x')~ Cukl]Gml(x-x")uiJk(x')dV(x') 
00 

- tf\Cukl(x'Mj,k(x')Gml(x-x')dV(x'). (8) 
00 

Equation (8) can now be manipulated in the same manner 
as for the case of an elastic system [11] by involving continuity 
of displacement and traction at the precipitate-matrix in
terface. Equation (8) allows for plastic relaxation in both 
precipitate and matrix phases; however, it shall now be 
assumed that plastic relaxation is restricted to the matrix. 
Under this condition, continuity of displacement requires 

ui(x') = ui(x') (9) 

where u, is the displacement on the precipitate side and w, is 
the displacement on the matrix side of the precipitate-matrix 
interface. 

For the transformation problem with a constant stress-free 
transformation strain ej*, continuity of traction necessitates 

= [CukluUx')- CukleUx"))nr • (10) 

The left and right-hand sides of equation (10) are the tractions 
on the precipitate and matrix sides of the precipitate-matrix 
interface, respectively. The stress-free transformation stress is 
a[/ and is determined by CTJ* = C*jklekJ. The superscript c on 
the displacement implies a measure of the constrained 
displacement; i.e., the displacement is referred to the system 
in its initial state before the stress-free transformation strain is 
applied. For the inhomogeneity problem, continuity of 
traction can be written 

CfJkluLj(x')nr=lCijkluu(x') 

- C ^ e g ( x ' ) ] « r (ID 

where the displacement referred to for the inhomogeneity 
problem is the total displacement and is still measured with 
respect to the position of the system before the boundary 
conditions are applied. 

Use of the divergence theorem and equations (8)-(10) yields 
the following integral equation for the displacement field with 
an imposed transformation strain [11] 
«4(*) = l\\°uGml:k(x-x')dV{x') 

- ACW /JJJGm l i k(x-x'MjG')dV&') 
v 

+ Cm\\\ Gmlik(x-x")e?j(x")dV(x') (12) 
M 

where t\Cijkl = C*jkl - Cjjkl and the integral over the matrix 
reduces to an integral over the plastic zone. Equation (12) is 
the governing equation for the displacement associated with 
an arbitrarily shaped precipitate possessing an eigenstrain ej* 
in which the matrix phase is able to relax plastically. If no 
plastic relaxation in the system is allowed, the integral over 
the matrix is eliminated and equation (12) becomes equivalent 
to an integral equation [11] for the displacement field 
associated with a misfitting precipitate in an elastic medium. 

Likewise, an integral equation for the displacement 
associated with the inhomogeneity problem can be obtained 
from equations (8), (9), and (11) 
u,„(x) = u%(x)-ACukitiSuij(x')Gmlik(x-x')dV(x') 

+ CUkl\\\^(x')GV
mLk(x-x')dV{x') (13) 

M 

where u%(x) is the applied displacement field and again the 
integral over the matrix is performed only over the plastic 
zone. 

3 Numerical Results 

Equations (12) and (13) are actually differential-integral 
equations in the displacement, um. Furthermore, the bounds 
on the volume integral over the matrix are complicated 
functions of the strains and displacements. Such difficulties 
seem to preclude any attempt at achieving analytical solutions 
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Fig. 2 The strains normalized to the strain at yielding are plotted as a 
function of radial distance from the inclusion center for 0 = 0 deg and 
ideal plastic behavior. The far stress field is taken as 85 percent of the 
yield stress, the elastic strains are given by the solid lines and the 
elastoplastic strains by the broken lines. 

to the displacements field. Of the several approaches available 
for the numerical solution of integral equations [12-14], one 
of the most straightforward is the iterative technique. 
Iteration to the final displacement field requires that an initial 
estimate be made of the displacements, total strains, and 
plastic strains of sufficient accuracy to ensure convergence. 
This assumes, of course, that the integral equation is ex
pressed in a form that does converge for the specific problem 
of interest. 

When invoking the iteration scheme, an approximation is 
first made to the elastoplastic displacement field by equating 
it with the elastic displacements. The displacement field then 
allows numerical calculation of the distortion (displacement 
gradient) and plastic strains, which can be substituted into the 
integrands of the volume integrals appearing on the right-
hand sides of the integral equations. The integration can be 
performed numerically and a new estimate of the 
displacement obtained. The preceding process is simply 
repeated until the displacement field converges to a unique 
solution. 

As derived, the elastoplastic integral equations are general 
since no restrictions are placed on the stress-strain relations 
nor is a specific yield criterion or flow rule defined. For 
computational purposes, we employ von Mises' yield con
dition and the associated Prandtl-Reuss flow rule for 
deformation theory, i.e., yielding takes place when the 
equivalent stress, ae, is equal to the yield stress in uniaxial 
tension, a.,, or ae = -JiSijSij/2 = a., where 5,, is the 
deviatoric stress tensor. For deformation theory, the Prandtl-
Reuss relations can be written as 

(14) 

where e„ is a measure of the effective plastic strain and is 

defined by ep = V2ege^/3. ep is directly related to the plastic 
strain for a uniaxial tension test. In this study we restrict our 
considerations to linear strain-hardening behavior. 

In an effort to examine the formulation of the elastoplastic 
integral equations, the choice of solution technique, the 
rapidity of convergence, and the accuracy of solution, the 
integral equation for the transformation problem is first 
applied to a spherical precipitate possessing a purely 
dilational stress-free transformation strain for which 
analytical solutions exist [1, 2]. The radially symmetric 
displacement field evident in this problem necessitates 
computation of only one displacement component. Using a 
standard five-point formula for numerical differentiation and 
a six-point Simpson-type numerical integration routine, it is 
found that the accuracy of the numerical results is surprisingly 
good. In all cases the displacement is found to lie within 1 
percent of the exact analytical solution [16]. The tangential 
strains, being determined directly from the displacements, 
also fall within the same tolerances. Deviation of the radial 
strain from analytical results is less than 1 percent for 
distances greater than about 1.5 precipitate radii increasing to 
about 10 percent near the precipitate-matrix interface. Since 
the computed displacements are quite accurate near the 
precipitate, error in the radial strains is almost certainly due 
to the calculation of numerical derivatives especially in this 
region where the displacement field is changing rapidly and 
there exists a natural discontinuity in the slope of the 
displacement at the precipitate-matrix interface. The rate of 
convergence seems to be slower as the precipitate phase 
becomes softer. This general trend is accentuated as the 
inhomogeneity of the system becomes more pronounced. 
When the elastic constants of the precipitate are much less 
than those of the matrix, the rate of convergence is very slow 
requiring many iterations before the analytical results are 
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Fig. 3 The stress normalized to the far stress field is plotted as a 
function of radial distance from the center of the inclusion for 0 = 0 
deg and ideal plastic behavior. The solid lines depict the elastic case 
and the broken lines the elastoplastic case. The stresses depicted here 
correspond to the strains given by Fig. 2. 

achieved. Such behavior is a function of the form taken by the 
integral equation and may indicate that employment of the 
elastic solution for a first-guess approximation is a poor one. 

For a spherical precipitate immersed in a uniform stress 
field, a system is chosen in which precipitate and matrix 
possess identical Poisson's ratios (<>= 1/3) but the precipitate 
has a shear modulus three times that of the matrix; n* = 3/x. 
Linear strain hardening is employed for ideal plastic behavior 
with the hardening coefficient m = 0. The yield stress is taken 
as oy = 10 ~ V a n d a far stress field corresponding to uniaxial 
tension is chosen in the elastic range of a00 = 0.85ov and is 
applied in the x3 direction. 

Although the geometry of the axisymmetric system is such 
that calculation of the displacements in one quadrant only is 
required, two components of the displacement exist as por
trayed in Fig. 2. This necessitates in the determination of the 
displacement component in the direction of the applied stress 
as well as in any direction perpendicular to the applied stress. 
For the cases examined in this study, the volume integration is 
performed over the quarter space defined by x3 > 0 and x2 S: 0; 
the contribution of the plastic strains within the region x2 £ 0 
being incorporated into the integrand by setting x2 = —x2. 

Figure 2 illustrates the behavior of the strain field as a 
function of distance, measured in terms of the precipitate 
radius, for the direction 0 = 0 where 6 is measured from the 
*3-axis. The strains are normalized to the strain at yielding, 
e0, and are portrayed in spherical coordinates. The solid lines 
depict the strain field for pure elastic behavior while the 
broken lines correspond to the elastoplastic case. The equally 
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Fig. 5 The interfacial stress is normalized to the far stress field and is 
plotted as a function of theta. The solid line is for the elastic behavior 
when d™ = 0.85 <r„. 

spaced broken lines represent the total strain state on plastic 
relaxation while the dotted-dashed lines depict the plastic 
strains. The behavior observed is most interesting in that 
plastic flow does not initiate at the precipitate-matrix in
terface along the 0 = 0 direction. Instead there is an elastic 
region extending from the precipitate out to a distance of 
approximately 1.07a, where a is the precipitate radius. Upon 
yielding, the extent of plastic relaxation increases rapidly 
reaching a peak value at about r = 1.3a before decreasing 
gradually to become purely elastic at r = 1.78a. 
The total strains take the same form as the plastic strains 
reaching peak values at about r = 1.3a before tapering off 
and approaching the strains encountered in the pure elastic 
solution. One very significant manifestation of the plastic 
relaxation in the vicinity of the precipitate is the reduction in 
the strain field encountered, as compared with the pure elastic 
case, when the matrix resumes elastic behavior. The decrease 
in strains in this region, corresponding to the attainment of 
the far stress field at a much more rapid rate, signifies a 
decrease in the perturbation of the applied stress field and a 
decrease in the energy of the system associated with the 
presence of the inhomogeneity as compared with the elastic 
solution. This change in the elastic strain field is as high as 7 
or 8 percent at distances as far as r = 2a. As expected for 
ideal plastic behavior, the elastic field within the plastic zone 
is also reduced with respect to the elastic system as can be 
verified by subtracting the plastic strains from the total 
strains. 

A small change in the strain field of the precipitate is also 
observed at the onset of plastic relaxation. The strain field is 
no longer constant, decreasing very gradually as the 
precipitate-matrix interface is approached. It also obtains a 
strain at the center of the inclusion slightly greater than the 
pure elastic case. Such a reduction in the precipitate strain 
field would be expected from the energetics of the system. 
Since it is more difficult for the far stress field to make a hard 
inclusion conform to the applied strain field of the matrix, the 
tendency for the system would be to decrease the distortion 

associated with the precipitate while incorporating it into the 
matrix phase. One must exercise discretion when evaluating 
strain fields in the immediate vicinity of the interface. As 
observed in the study of the transformation problem, the 
necessity of calculating numerical derivatives may lead to 
errors as large as 10 percent near the precipitate-matrix in
terface. However, these errors are usually encountered in the 
matrix phase while behavior in the precipitate is observed to 
be fairly gradual. Furthermore, and most importantly, it is 
shown later that continuity of traction calculations are fairly 
reasonable across the precipitate-matrix interface indicating 
that the strain calculations are reasonably acceptable. 

As an illustration of the behavior of the stress field 
surrounding a relatively hard inhomogeneity immersed in a 
uniform strain field, we have plotted the stresses, normalized 
to the stress at infinity, as a function of the radial distance for 
the case corresponding to the strains depicted in Fig. 2. Figure 
3 portrays the stress field for d = 0. For comparative pur
poses, the equivalent stress as calculated from the plastic 
results is also included as the dashed line of unequal length. In 
the matrix phase, the radial stress for the plastic solution is 
consistently less than that obtained when plastic relaxation is 
prohibited, especially in the direction defined by 6 = 0. In the 
precipitate, the radial stress achieves values slightly greater 
than the elastic case in the center of the sphere while 
decreasing significantly below the elastic solution as the in
terface is approached. 

The tangential stress, <jfl, is also observed to decrease 
substantially within the precipitate phase. Unexpected 
behavior is observed in the tangential stress exterior to the 
inclusion however, where ae for the elastoplastic solution is 
greater than that of the elastic case. Such a stress field is not in 
contradiction with Fig. 2 where the elastic strains for the 
plastic solution are shown to lie below the strains for the pure 
elastic case in this region, but can be clarified by reference to 
the stress-strain relations where ay = Xe|*5„ + 2/xe|. For the 
elastoplastic solution the dilatation is a larger, positive 
number than for the elastic case while the tangential strain, e%, 
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is a smaller (in magnitude) negative number. Hence, when the 
two terms are added, the results depicted in Fig. 3 follow 
naturally. 

The equivalent stress for the plastically relaxed case is also 
portrayed in Fig. 3. Since ideal plasticity dictates that flow 
occurs when the equivalent stress is equal to the yield stress 
and that no work hardening takes place, the equivalent stress 
should be equal to the yield stress in the plastic zone. This is 
precisely the situation realized in Fig. 3. 

The stress and strain fields depicted by Figs. 2 and 3 might 
be better grasped with reference to the geometry of the plastic 
zone as a whole. One quadrant of the plastic zone which is 
symmetrically related to the other three quadrants is 
illustrated in Fig. 4. For comparative purposes, the plastic 
zone corresponding to the identical system only with a far 
stress field of a" = 0.80a,, is also shown at the left. The solid 
line represents the precipitate-matrix interface while the 
broken line depicts the boundary between the plastic zone and 
elastic behavior in the matrix phase. The majority of the 
plastic relaxation takes place in the direction of the applied 
stress field. What is interesting to observe is the presence of an 
elastic region completely surrounded by a plastic zone situated 
on the precipitate-matrix interface extending from zero to 
almost 20 deg for the case a°° = 0.85CT,,. Apparently, this 
behavior is not unique to the three-dimensional problem. 
Argon et al. [6] have modeled the spread of the plastic zone 
for the two-dimensional problem of a rigid cylinder subjected 
to a far stress field that is of shear character, by finite-element 
techniques. Although the grid network employed is rather 
coarse, they observe the nucleation of a plastic region that is 
removed from the interface in the directions of the maximum 
tensile stress. As the far shear stress is increased, a new plastic 
region is formed in the direction of the applied shear stress. 
These distinct plastic zones merge leaving regions of elastic 
behavior surrounded by a plastic zone in the maximum tensile 
directions and situated on the precipitate-matrix interface. 
The boundary conditions invoked by Argon et al. [6] are 
fundamentally different from ours, yet it is interesting to note 
that similar behavior is observed in the spread of the plastic 
zone. 

For the case of an applied tensile stress, direct application 
of von Mises's yield criterion to the elastic solution indicates 
that distinct plastic regions form in the direction of the ap
plied stress away from the interface and at the interface in 
roughly the direction of the maximum applied shear stress. As 
the far tensile stress is increased, these regions overlap, 
leaving behind the elastic cap depicted in Fig. 4. Although we 
have applied our technique only to the cases of a°°/ar = 0.85 
and 0.80, it appears that the overlap of the distinct plastic 
regions occurs, for ^* = 3/i, when the far stress field is about 
a™ = 0.79av. 

The existence of the elastic cap at the precipitate-matrix 
interface is possibly understood on physical grounds by 
considering two points. The first concern is that the system 
desires to decrease the effective presence of the strong 
inhomogeneity by shielding its disturbance from as much of 
the matrix as possible while specifically attempting to 
decrease the stress and strain field of the precipitate in order 
to achieve a lower total energy to the system. At the same 
time, a continuity of displacement and traction must be 
maintained at the precipitate-matrix interface—the traction 
continuity necessitating an equivalence of radial stresses 
across the interface. Hence, if radial stresses in the matrix at 
the interface are sufficient to cause plastic relaxation, then the 
stresses within the precipitate must be correspondingly larger, 
which would have the tendency to raise the energy of the 
system. Consequently, the problem may be circumvented by 
maintaining an elastic buffer zone between the plastic region 
and the precipitate. This same behavior is observed for the 
elastic case and a hard precipitate where Fig. 2 also exhibits a 

maximum value in the radial elastic strain rather than a 
monotonic decrease from the precipitate-matrix interface. 
The peak behavior of the radial elastic strain was also noticed 
in the work of Moschovidis and Mura [17], who studied the 
elastic stress field associated with inhomogeneities through an 
equivalent inclusion method. 

Of important concern in some material behavior is the 
development of large interfacial stresses associated with a 
relatively hard inclusion subjected to a far stress field. 
Although we have been concerned only with the incipient 
stages of plastic relaxation, certain trends in the interfacial 
stress have begun to manifest themselves. In Fig. 5 the in
terfacial stress normalized to the applied tensile stress is 
plotted as a function of orientation angle, 8. We retain the 
same system with a°° = 0.85(7,,, n* = 3fiand/w = 0. The solid 
line depicts the interfacial stress for the purely elastic con
dition with the broken line representing the elastoplastic case. 
The trend observed is that on plastic relaxation the interfacial 
stress decreases for low angles of 8(8<\5 deg) and increases 
for the higher values of 0 (15 deg <8<55 deg) maintaining a 
fairly flat value for 8 less than about 15 deg. Huang [5], in his 
study of rigid cylindrical inclusions in an incompressible 
Ramberg-Osgood strain-hardening material subjected to an 
applied shear stress, finds that a maximum interfacial stress 
develops about 12 deg from the direction of the principal 
tensile axis. Orr and Brown [18] find for the same type of 
problem a maximum in the shear stress developing at about an 
angle of 17 deg from the principal tensile axis for very large 
distant strain levels. In our work we see what may be the 
initial stages of the shift in the maximum interfacial stress. 

With the substantial error that may arise in calculation of 
the strains from the numerical derivatives of the 
displacements, some question may arise as to the validity of 
the solution in the region of the precipitate-matrix interface. 
In an attempt to determine the magnitude of the errors that 
may be occurring, the tractions are calculated on the interface 
in both precipitate and matrix phases. These results indicate 
that the continuity of traction is reasonable along the entire 
precipitate-matrix interface. The radial stresses are within 3 or 
4 percent for 6 < 20 deg rising to about 20 percent at 6 — 40 
deg. The agreement between tractions in precipitate and 
matrix phases then improves greatly until 8 approaches 90 deg 
where larger divergences begin to occur (although the 
magnitude of the radial stress has become much smaller). The 
tangential stresses usually fall within 15-20 percent of one 
another for the smaller values of 6 (where the magnitude of 
the tangential stress is small) while becoming quite similar for 
values of 6 exceeding 45 deg. Since the difference in these 
values is not too much greater than the error occurring from 
the derivatives in the transformation problem, it is felt that 
the representation of the stress and strain field is reasonable 
for the results obtained. 

The effectiveness of the integral equation approach to the 
inclusion problem of plasticity is determined by the ability to 
handle the volume integral over the plastic zone. Clearly if the 
plastic zone becomes too large, performing the volume in
tegral becomes unreasonable at least in the manner that we 
have approached the problem. Such difficulties become all 
important when nonaxisymmetric problems are considered. 
For these cases, the volume integral over the plastic zone must 
still be calculated, but the determination of the displacement 
must be accomplished over some three-dimensional region. 
This would require large increases in the computation time per 
iteration of the solution. Hence, it appears that the integral 
equation approach to plasticity problems of a nonaxisym
metric nature is straightforward in principle but not 
necessarily in application. 

For axisymmetric systems, however, the need to determine 
displacements over a planar region makes the integral 
equation approach attractive so long as the plastic zone does 
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not become too large. If the problem defined in the 
displacements can be reformulated in the distortions, then the 
difficulty associated with the calculation of numerical 
derivatives may be avoided and the uncertainty in the im
mediate vicinity of the interface may be somewhat alleviated. 
Although the integral equation procedure is employed with 
the intent of arriving at solutions to the three-dimensional 
inclusion problem, it may be most applicable to the two-
dimensional problem, especially the plane stress case. This is 
because the integration need be performed only over a planar 
region with the displacements being calculated over a planar 
region. In this manner, reformulation of the displacement 
problem in terms of the distortion should not greatly increase 
the computer time necessary to iterate to a stable solution. 

4 Summary 

In this study we have derived an integrodifferential 
equation for the solution of the displacement field associated 
with either a transformed inclusion or inhomogeneity when 
the matrix phase is allowed to relax plastically. When the 
technique is applied to a misfitting spherical precipitate using 
an iterative solution scheme, the results are found to be in 
good agreement with analytical solutions. The integral 
equation is then applied to a relatively hard precipitate in a 
uniform stress field. On the basis of the results obtained from 
the transformation problem and continuity of traction 
calculations, we feel our solution to the inhomogeneity 
problem is reasonable. General trends in the behavior of the 
plastic zone size are similar to those observed for the two-
dimensional plane stress case including the formation of an 
elastic cap in the direction of the maximum tensile stress. 
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Bounds on the Transverse 
Effective Conductivity of 
Computer-Generated Fiber 
Composites 
Using trial functions that are motivated by single-body calculations, we have 
derived bounds on the effective transverse thermal conductivity of a fiber com
posite. These bounds incorporate both fiber area fraction information and some 
information of the configurational statistics. Simplified expressions for the bounds 
are obtained for the limits of widely differing conductivity values for the con-
stitutent phases, and of a dilute suspension. The bounds are made specific for a 
given computer-generated fiber composite and these specific bounds are compared 
with the best available bounds that require area fraction information alone. The 
conclusions reached are that configuration statistics are significant for effective 
property calculations for moderately dense composites for component conductivity 
values that differ by some one to two orders of magnitude, or greater. Further, the 
bounds based on the single-body calculation are reasonably close for component 
conductivity values that differ by some two orders of magnitude, or less. 

Introduction 
In constructing prediction models for the effective 

properties of a suspension of an inclusion phase randomly 
dispersed throughout a matrix, the engineer or scientist must 
address two problems of some difficulty. Both problems arise 
because the effective properties are dependent on complicated 
multiple particle interactions. One of the problems is a 
problem in analysis; it is to develop solution algorithms 
capable of incorporating the multiple particle interactions. 
The second problem is a problem in description; it is to 
prescribe the statistics of the microstructure that are required 
by the algorithms developed, if they are to be applied to a 
specific suspension. Clearly, logical priority should be given 
the problem in analysis and the literature of effective property 
prediction modeling is consistent with this. With a number of 
methods of analysis available, it is now appropriate to 
consider the description problem and its impact on the goals 
of the engineer or scientist; e.g., improved designs of com
posite materials or the development of inverse algorithms by 
which some aspect of the microstructure geometry is inferred 
from a bulk property measurement. 

We can distinguish between effective property prediction 
models which are direct, in the sense that the goal is to predict 
a numerical value for an effective property measure, from 
models intended to place upper and lower bounds on per-
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missible numerical values of the measure. Direct models can 
be obtained in limiting situations; e.g., a weakly 
inhomogeneous limit or a dilute suspension limit and their 
extensions (see reference [1] for a discussion). Such models 
are perturbative in their nature and their utility in discussing 
real suspensions is qualitative. For example, the importance 
of inclusion shape on an effective property measure can be 
demonstrated by a dilute suspension calculation. Non-
perturbative direct models can be derived based on "self-
consistent" calculations. These models have been severely 
criticized in the literature and the domain of the validity, if 
any, is a subject of some controversy. From the perspective of 
our studies this controversy is largely academic. Central to the 
application of a self-consistent calculation of an effective 
property measure is an assumption that the effective property 
is independent of refined information of the microstructure 
geometry. Thus, in a sense our interest is limited, by 
definition, to that class of microstructures for which self-
consistent calculations fail. Nonperturbative direct models 
that are based on "exact" calculations are also available, for 
an ingenious and precisely described geometry, the concentric 
sphere assemblage, or its two-dimensional counterpart, the 
concentric cylinder assemblage [2, 3]. While the rigor of these 
last calculations, for the specified microstructures for which 
they are derived, is not a subject of controversy, their ap
plicability to more general microstructures requires an 
assumption as to the lack of importance of differences in 
microstructure geometry. Thus, from the perspective of our 
studies, this use of calculations based on precisely defined 
microstructures suffer the same limitation as do self-
consistent calculations. 
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Finally, we can envision a direct model based on a 
numerical solution to the microstructure field problem, for a 
given random suspension. A direct numerical approach is well 
within the capability of available computers. A numerical 
derivation of a direct effective property prediction model 
would serve to extend the models based on the composite 
sphere and composite cylinder assemblage to other 
microstructure geometries. Completely unanswered, however, 
is the question of relating a direct prediction model obtained 
for a given microstructure geometry model to the effective 
property of a given physical specimen, if the microstructure 
model is not a point-by-point simulation of the actual 
microstructure. 

Bounding the permissible values of an effective property 
measure provides an approach which enables the introduction 
of limited information of the microstructure geometry, in a 
systematic fashion, while retaining a formulism that is 
mathematically rigorous. Presumably, as more information is 
incorporated into a given bound pair the smaller will be their 
spread. That is, the spread of a bound pair is a measure of the 
geometric information not incorporated in their deter
mination. Any single bound pair can be interpreted to apply 
to a class of suspensions, the class being defined by the 
geometric information that is incorporated in its derivation. 
Thus, bounds that are based on volume fraction information 
alone are applicable to all suspensions with the prescribed 
volume fraction. Viewed in this light, widely separated 
bounds are widely separated because the class of suspensions 
to which they apply is very broad. This may be very 
disconcerting to an analyst with an interest in predicting an 
effective property; it should, on the other hand, be a very 
welcome event for a designer interested in exploiting the 
bounds, by judiciously controlling more refined 
microstructure geometry than that on which the bounds are 
based. 

In our studies our goal is to develop rigorous bounds that 
incorporate more detailed information of the microstructure 
geometry than that contained in volume fraction information. 
With this accomplished we wish to reduce, or specify the 
bounds for a given suspension that we can "manufacture" in 
a digital computer. Of course any given suspension would 
exist as manufactured and, consequently, it would, in 
principle, be possible for us to directly calculate an effective 
property measure for it. As noted previously, however, such a 
calculation would apply only to it. By restricting our 
calculation to bounds, a given suspension is representative of 
a class of suspensions, a class that is defined by the geometric 
measures that are identified by the bounds. 

In the specific study reported, herein, we consider a two-
dimensional calculation and bound the transverse effective 
thermal conductivity of a fiber composite consisting of 
oriented, infinitely long, equisized, circular fibers dispersed 
randomly in an infinite matrix. It is well known [1, 2, 4] that 
by a simple redefinition of terms, the resulting expressions can 
be directly interpreted to provide bounds on a variety of 
effective property measures. 

The outline of the paper is as follows. In the next section we 
provide a brief review of the bounding approach to predicting 
effective property measures. This is followed, in the third 
section, by a development of bounds that require information 
of the microstructure geometry that is more detailed than 
volume fraction information. A discussion of the newly 
derived bounds, including a comparison with bounds 
requiring only volume fraction information is given in the 
fourth section. It is in that section that we discuss the com
puter-generated composites and present the numerical results 
obtained for these. 

Bounds on Effective Property Measures 
All bounds on an effective property measure of a 

heterogeneous material are based on a definition of the 
measure in terms of an averaged energy stored in the material. 
Thus, the effective thermal conductivity makes reference to a 
specimen, comprised to the heterogeneous material, which is 
large enough to be representative of a collection of like 
manufactured specimens. The specimen is envisioned to be 
forced, at the boundary surfaces, in a manner that would 
result in homogeneous, i.e., constant heat flux, q(x), and 
temperature gradient, T(x), fields if applied to a similarly 
shaped specimen but comprised of a homogeneous material. 
The effective thermal conductivity is defined by equating the 
averaged thermal energy stored in a homogeneous, effective 
material specimen to that stored in the given, heterogeneous 
material specimen. 

Reducing the definition to mathematical formulas, we have 

^qo -T 0 =^ jq (x ) -T (x ) C f x , (1) 

where q0 and T0 denote the constant heat flux and tem
perature gradient fields in the homogeneous, effective 
material specimen and q(x) and T(x) denote the spatially 
varying fields in the heterogeneous material specimen. The 
volume integral is over the extent of the specimen. Based on 
equation (1), we can write two expressions for computational 
definitions of/:*, the effective thermal conductivity. 

-**T0 .T0=2pJAr(x)T(x).T/x)<fe, (2a) 

and 

qo'qo 1 f q(x)-q(x) 

~v^ = 2v)~k(*rdx- m 

Here, k(x) is the spatially varing conductivity for the 
heterogeneous material specimen. 

The bounds on k* are obtained by making use of two, 
complementary variational formulations of the heat con
duction problem. Thus, the actual temperature gradient field 
in the specimen is the member of a class of precisely 
prescribed vector fields, which minimizes the right-hand side 
of equation (2a). The class of trial fields are described as 
vector fields that are derived from scalar potentials which, in 
turn, are required to satisfy prescribed temperature conditions 
applied at the boundary of the specimen. In the context of the 
thought experiment in which k* is to be determined, the 
foregoing requirement on the boundary condition to be 
satisfied by an appropriate trial function can be translated 
into a condition that the spatial average of the trial function 
must equal the temperature gradient in the homogeneous, 
effective material specimen; i.e., T0 [2]. On introducing 
T r (x ) to denote a generic member of the allowable class of 
vector fields, i.e., to denote a trial function, the variational 
formulation leads to an upper bound on k*, i.e. 

k*T0-T0< - j k(x)TT(x).TT(x)dx. (3a) 

The lower bound makes use of a complementary variational 
principle. The actual heat flux in the specimen is the member 
of a class of precisely prescribed vector fields that minimizes 
the right-hand side of equation (2b). The class of trial func
tions is now described as vector fields that are derived from 
vector potentials, and that satisfy prescribed heat flux con
ditions applied at the boundary of the specimen. The 
boundary condition to be satisfied, in the context of the 
present problem, is translated into a condition that the spatial 
average of the trial function must equal the heat flux in the 
homogeneous, effective material specimen, i.e., q0 [2]. On 
introducing qT(x) to denote a trial function, the variational 
principle leads to the lower bound, 
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qo'Qo M gT(x)-gT(x) 

k(x) 
dx. (3b) 

The most elementary, or classical bounds follow im
mediately from equations (3a) and (3b) on noting that the 
constant T0 and q0 fields are appropriate trial functions for 
equations (3a), (3b), respectively. Thus we write 

1 

<T> 

<k*<{k), (4a) 

where the angular brackets are used to denote a spatial 
average taken over the specimen. It has been noted by a 
number of researchers, e.g., [4], that the law of mixtures, 
equating the effective property measure to a spatial average of 
the heterogeneous property measure, actually provides a 
rigorous upper bound to the effective property measure. 
Further, it is well appreciated, for heterogeneous materials 
that are described as suspensions of an inclusion phase 
dispersed throughout a matrix phase, that the nature of the 
geometric information in (k) and in (l/k) is the relative 
amount of the two phases, i.e., volume fraction information. 

Improved bounds can be obtained by choosing trial func
tions that more nearly reproduce the actual temperature 
gradient and heat flux fields. This is accomplished by ap
proximately solving for the temperature gradient and heat 
flux fields. For the bounds to remain rigorous, it is of course 
necessary that the trial functions satisfy exactly the conditions 
dictated by the variational principle on which the bound is 
founded. A hierarchy of improved bounds can be obtained by 
using trial functions motivated by perturbation calculations 
[5]. These reported studies on improved bounds accept a 
statistical interpretation of the problem; an interpretation that 
replaces the spatial averages in eqaution (2a) and (2b) by 
statistical, or ensemble averages. Notice that, for the con
ditions stated in the definition of k*, all the fields involved are 
to be statistically homogeneous in the limit of an unboundedly 
large specimen size, as observed on a length scale determined 
by variations in k(x). The equation of a spatial average with 
an ensemble average amounts, then, to an ergodic hypothesis, 
the validity of which requires the specimen geometry to be 
representative. The hierarchy of bounds obtained as outlined 
collects additional information of k(x) in the form of 
multipoint correlation functions. First-order bounds [6, 7], 
the classical bounds are referred to as zero-order, require, in 
addition to {k) and {\/k), three-point correlation functions 
of the form (k'(xt) k'(x2) k'(x3)) and <£'(JC,) 
k'(x1)/k(xi)), where k' (x) = k(x) —{k), for their 
evaluation. Second-order bounds require still further in
formation in the form of four and five-point correlation 
functions [8]. For two-phase suspensions, the higher-order 
correlation functions are dependent on more refined in
formation of the microstructure geometry, such as inclusion 
shape information or size distribution information. An in
teresting problem is to determine the relationship between 
these analytical measures and recognizable geometrical 
descriptions, a task that has been discussed by several 
researchers. (See, for example, [1] for a summary discussion.) 

An alternative to using perturbation calculations to 
motivate trial functions, would be to consider the other 
limiting situation for which we can approximately solve for 
the effective property measure of a suspension, namely the 
dilute suspension limit. To first order the calculation requires 
the solution of a single-body problem. Although extensions to 
higher order can be envisioned (in the solutions to two-body 
calculations, then, three-body calculations, etc.,) the com
putational difficulties are expected to be significant. It is this 
alternate approach that we consider in the remainder of this 

paper. We note, here, that while the approach may seem to be 
natural, the author is familiar with only reference [9] as a 
published report of a similar calculation. 

Effective Property Bounds Based on Single-Body 
Calculations 

We consider a continuous fiber-reinforced composite and 
calculate bounds for the effective thermal conductivity 
measured transverse to the fiber direction. The bounds are 
based on trial functions that are motivated by solutions to 
single-body formulations. Thus, an appropriate trial function 
for the upper bound is 

T r ( x ) = T ^ [ e 1 + « X ) t ( x - x i ) l 
1 CXC L ;„ i J 1 

where 
•1 

and 
kF + l 

(5) 

(6) 

t(x 
cos 20,-ei +sin20,e, 

-*i) = -2 — ; r , - > l , 
n 

= - e , ; / - ,< ! . (7) 

In these expressions, T0 = T0et is the constant temperature 
gradient field in the homogeneous, effective medium, ej being 
a distinguished direction in the plane transverse to the fiber 
direction; c is the area fraction of the inclusion, or fiber, 
phase; and kF is the normalized fiber conductivity taken 
relative to the matrix conductivity, which is set equal to unity. 
The fibers are assumed to be circular in cross section and are 
to be equisized. We normalize transverse dimensions relative 
to the fiber radius, which is set equal to unity. The fibers are 
located by transverse position vectors, x,-; the r,• = x — x-, 
locate the fiber centers relative to the generic field point x; and 
d, is the angle made by r, and the distinguished direction, ei. 
The summation is over all the fibers, taken to be infinite in 
number in an appropriate limit. 

That T r (x ) is derived from a scalar potential, i.e., that 
VxTT = 0 for all x, is readily demonstrated by a direct 
computation. As noted in the last section, it is also necessary 
to demonstrate that the average of T r (x ) is equal to T0ei 
before accepting T r (x ) as a trial function. To do so requires 
specification of the average of interest. Depending on one's 
perspective of the problem, an average can be interpreted as a 
spatial average taken over the field point coordinate, x, or a 
statistical average, the precise nature of \vhich depends on 
different but equivalent definitions of the underlying 
stochastic process. For example, we can envision a specimen 
in which the locations of the individual fibers are precisely 
given, relative to a fixed origin, and a stochastic process in 
which the field point location, relative to this fixed origin, is 
random. The averaging is over the locations of the field 
point. This stochastic interpretation closely mirrors the 
deterministic interpretations; operationally the two in
terpretations lead to the same integration. 

Alternately, we can envision an experiment in which the 
location of the field point, relative to a fixed origin is precisely 
given, but the locations of the fibers, relative to the fixed 
origin, are random. The averaging is over the locations of the 
fibers, or, over an ensemble of specimens. The equivalence of 
the two stochastic processes can be argued in the limit of an 
infinite number of unboundedly large, statistically identical 
specimens. We can envision still a third experiment in which 
the "fixed" origin is chosen to coincide with the location of a 
reference fiber and the stochastic process is defined by 
locating the field point, relative to this reference, randomly 
and also locating all other fibers, relative to this reference, 
randomly. Again the equivalence of this process with those 
outlined can be argued in the limit described. 
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Depending on the calculation to be performed, it is 
sometimes convenient to change our interpretation of the 
underlying process. For averaging T r (x) it is convenient to 
consider a statistical average taken over the locations of the 
fibers. Operationally this requires multiplying the r.h.s. of 
equation (5) by a joint probability density function of the x, 
coordinates and integrating the result over a 2N (N is the 
number of fibers* taken to be infinite in the limit) dimension 
configuration space. Because of the relatively slow rate of 
decay of t(r,) with increasing r,, i.e., r,~2, we encounter a 
convergence difficulty in accomplishing the configuration 
space integration in the infinite domain limit. Further, due to 
the angular dependence of the numerator in equation (7), the 
nature of the convergence difficulty is not a logarithmic 
divergence, as a minus two decay rate might indicate; the 
difficulty is, instead, a conditional convergence. That is, while 
a finite limit can be achieved, the value of the limit depends on 
the precise manner of taking the limit; the value of the limit 
depends on the "shape" of infinity. The appearance of 
conditionally convergent integrals in effective property 
measure calculations, and the need to "renormalize" the 
calculations to remove the convergence problem have been the 
subjects of a fair number of recent papers [10-13]. It is, 
therefore, not necessary to consider this point in detail here. 
We simply note that conditionally convergent integrals are 
encountered in accomplishing the averages required on both 
sides of the inequalities that provide bounds on k*, e.g., 
equation (3a), and that a mathematically acceptable renor-
malization is to be consistent in the manner of accomplishing 
the required integrations. That is, for example, the infinite 
domain integrations over r, are to be accomplished first by 
integrating over Q, followed by an integration over r, wherever 
they are encountered. Following this operational rule, the 
average of T r (x) calculates to T0et for isotropic statistics. 

We are now ready to calculate the average of k(\) 
T r (x )»T r (x ) . It is convenient, here, to consider a statistical 
average taken over the random location of the field point, x. 
The following expression can be written, 

<*(x)T7-(x).T7-(x)> = ( l - c ) < T r ( x ) . T r ( x ) > w 

+ ArFc<Tr(x).Tr(x)> lr) (8) 

where the indicated averages on the r.h.s. are conditional 
averages, given that the field point is located in the matrix (M) 
or a fiber (F), and (1 — c) and c are the probabilities that the 
field point is located in the matrix and a fiber, respectively. 
These can, of course, be equated to area fractions. On sub
stituting equations (5)-(7) into equation (8), and making use 
of equation (3a), the following equation is obtained for the 
upper bound of k*, k\j. 

( l -ac) 2 Ar&=F„(e ,Ar f ) , (9) 

where the r.h.s. depends on the configuration statistics (C) 
and on kF according to 

Fu (C, kF) = 1 -~c + 4kFc/ (kF +1)2 

+*{»-«[({L^)')A®rP)X] 

The conditional averages for the field point located in the 
matrix contains contributions from all fibers; the conditional 
averages for the field located in a fiber contains contributions 
from all fibers except the one within which the field point is 
located, the fiber denoted by / = 1. 

In our numerical investigation of the bounds, presented in 
the next section, it is convenient to directly evaluate the 

conditional averages required by Fu(Q,kF), as indicated by 
equation (10). Perhaps a more easily interpreted expression 
for Fu (Q,kF), however, is in terms of integrations taken over 
certain conditional probability densities. We write 

4kF 
FuiQ,kF) = (l-c) 

w 
PlM(r) 

r4 

P2M(r) 
r4 

+ (l-c) 
\ \ \ 

+ a2{\-c) 

(2cos29-l)PM(r,s,6) 

dt 

dr 

(kF + l)2 

drdsd6 

«2k4\\ Pv(r) 

+ c w {2cos26-l)P,(r,s,e) 

dr 

drdsdO (11) 

where the following conditional probability measures have 
been introduced. 

P\M (r) Conditional probability density on the location of 
the nearest fiber to the origin, given the origin is in the matrix. 

PiM(r)(Pii(r)) Conditional probability density on the 
location of any fiber other than the fiber nearest the origin 
given in the origin is in the matrix (a fiber). 

PM(r,s,d) (P/(r,s,6)) Conditional probability density 
that the exterior vertices of a triangle formed by two lines of 
lengths r and 5- and included angle 8, locate the centers of two 
distinct fibers given the interior vertex lies in the matrix (a 
third fiber). 

The two-dimensional integrations are over the transverse 
plane of the composite; the three-dimensional integrations are 
over the indicated coordinates. The probability densities are 
normalized and we have restricted the statistics of the 
suspension to be isotropic. It is clear from these probability 
density functions that the bounds given by equations (9), (10), 
or (11) require up to three-body information of the relative 
positions of the fibers. 

A lower bound to k* can be obtained using the trial func
tion 

Qr(x) = 
8o 

1 + ac 
ei + ZJq(x-x/) (12) 

where q(x - x,-) differs from t(x - x,-) only in the sign of ei 
for points such that r, < 1. It is not difficult to demonstrate 
that V«q7- = 0 and that the average of qT(x) equals Q0ei. 
The difference in the sign of e, that distinguishes the two trial 
functions arises in satisfying the proper continuity conditions 
at the interface r, = 1, for the separated single-body 
solutions. Using equation (12), we next calculate the average 
of qT(x) •<iT(x)/k{x) in exactly the same fashion as in
dicated by equation (8). The following expression is obtained 
for the lower bound, kL *. 

1 
(13) 

(1 + ac) 2 FL{Q,kF)' 

where 

FL(Q,kF) = (l-c)+4kFc/(kF + \)2 

+£[((r j?)V<(rwy- <•<> 
Thus,FL(Q, kF) is obtained from Fv (C, kF) on replacing kF 
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by l/kf in the last term of the defining equation. The con-
figurational statistics required for FL (Q, kF) are identical as 
those required for Fy (Q,kF). 

In the next section we turn to a discussion of the derived 
bounds. We consider reduced expressions for them in limiting 
situations, their numerical evaluation for a computer 
simulation of a fiber composite, and compare them with 
previously presented bounds that incorporate less information 
of the microstructure geometry. 

Discussion of the Bounds 
We consider certain limiting expressions for the bounds. 

The limit kF -~ 0 corresponds to a suspension of non
conducting holes in a matrix of finite conductivity. For fixed 
c, the upper bound reduces, in this limit, to 

(l+c)2kl: 

<(£SW> ( l - c ) , 

while the lower bound approaches zero as 

kt (kF/c) 

( l - c ) 2 
sin 28j 

(15) 

(16) 

{(E^)V((rw} f 
The loss of the lower bound for a suspension consisting of a 
void phase dispersed throughout a matrix is sometimes used 
as evidence of the weakness of the bounding approach to the 
effective property prediction problem. This loss, however, is 
actually a result of the fact that the bounds are rigorous and 
incorporate all aspects of the underlying physics exactly. The 
lower bound must vanish in the limit of kF — 0 since the 
bound does not incorporate sufficient geometric information 
to explicity exclude suspensions in which the void phase, i.e., 
the holes, form connected surfaces that separate the matrix 
phase into unconnected regions.1 Such a suspension, which is 
more properly viewed as a suspension of unconnected in
clusions of finite conductivity dispersed throughout a matrix 
of zero conductivity, will have an effective conductivity that is 
zero. 

Similarly, we can consider the limit of kF — oo. Because of 
the normalization of the problem, the limit of kF — oo can be 
interpreted as a suspension of fibers of finite conductivity 
dispersed through a matrix of zero conductivity. For fixed c, 
the upper bound increases without bound, in this limit, as 

»-<>'*«-**[<(S=?) >, 

and the lower bound reduces to 

(17) 

It might appear at first that the condition that two inclusions touch would 
place strong restrictions on the probability density defined on the relative 
positions of the inclusion, and that knowledge of the two-particle probability 
density should enable us to distinguish particles that join to form closed sur
faces. It must be remembered, however, that the two-particle probability 
density required of the bounds refers to all combinations of inclusion pairs. 
Thus, even if the inclusions were joined to form connected surfaces, the 
overwhelming preponderance of pairs would not touch. 

( l+c) 2 

<-4+«S^)V<(£T)>.] 
(18) 

The upper bound corresponds to a geometry in which the high 
conductivity fibers form connected surfaces that may separate 
the zero conductivity matrix into unconnected regions. The 
fact that it increases without bound, in the limit, is due to the 
normalization of k*, with respect to the matrix conductivity 
which is zero in the limit. The lower bound corresponds to a 
geometry in which the high conductivity fibers are isolated, 
separated by the zero conductivity matrix. The fact that it 
remains finite in the limit is, again, due to the normalization 
chosen. 

As a general conclusion, then, for suspensions in which the 
conductivities of the two phases differ widely, effective 
conductivity values near to the upper bound are appropriate 
for geometries for which the higher conductivity phase forms 
connected surfaces. In this situation, the effective con
ductivity value is properly scaled using the higher conductivity 
value. Effective conductivity values near to the lower bound 
are appropriate for geometries for which the lower con
ductivity phase forms connected surfaces that separate the 
matrix into unconnected regions. In this situation, the ef
fective conductivity value is properly scaled using the lower 
conductivity value. 

Another limit of interest is the dilute suspension, or small c, 
limit. We refer to equations (11) and (14) and consider the 
simplifications to be introduced in Fv and FL, for c < < 1. 
Consider first the terms containing the conditional 
probabilities P1M, P2I, PM, and P,. These can all be neglected 
in the limit provided we introduce a restriction that precludes 
any clustering of fibers into groupings of two or more. More 
precisely, the requirement is that the distance separating a 
fiber from its neighbor is to be scaled by c~'/2, in the limit. 
The two functions, FL and FUt minus the neglected terms are 
identical and the only remaining term containing con-
figurational information is the indicated integral over the 
conditional probability P\M. Moreover, it is not difficult to 
conclude that the dependence of this integral on the relative 
positioning of the fibers vanishes to lowest order in c, in the 
small c limit, subject to the same restriction introduced in the 
foregoing. Thus, we are justified in evaluating this integral 
for a specified configuration, say, the fibers are located at the 
intersection of a square grid. Specifically, then, we consider 
the average of r~4 for a stochastic experiment in which r is the 
distance from a fixed origin to a point that is randomly and 
uniformly positioned through the region that is exterior to a 
circle of unit radius and interior to a square ofJ-nVc sides, 
both centered at the origin. By direct calculation, this average, 
to lowest order in c, is equal to c. Thus, in the small c limit 

Fu(e,kF)=FL(e,kF) = l+0(c2) 

and the bounds coincide in the limit to 

k* = 1 + lac. 

(19) 

(20) 

The coincidence of the bounds in the small concentration limit 
for suspensions in which there is no clustering is to be ex
pected since the trial functions on which the bounds are based 
are a sum of exact solutions to the single body problem. 

There is no contradiction in the loss of one of the bounds in 
the limits of kF — 0 or kF — oo, and the coincidence of the 
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Table 1 Evaluated measures of microstucture geometry for computer-
generated fiber composites 

c 0.05 0.10 0.20 0.30 0.10 (Rect.) 
pM 4.99 x 10"2 9.05X10-2 1.52X10"1 1.3 x 10"1 8.67 x 10~2 

pF 7.78 x 10~4 2.85 x 10~3 9.56 x 10"3 1.8 x 10" 2 3.27 x 10"6 

<1//-,4>M 4.94 x 10~2 9.22 x 10~2 1.77x10-' 2.55 x l O ' 1 9.75 x 10"2 

Table 2 Upper and lower bounds for computer-generated fiber composites 
and comparison with Hashin-Shtrikman bounds (kF = 100) 

Table 2(B)—Upper bound 
c 0.05 0.10 0.20 0.30 0.10 (Rect.) 
kl 1.19 1.55 2.90 5.15 1.21 
k'u,., 3.56 6.26 12.10 18.61 6.26 

Table 2<6)—Lower bound 
c 0.05 0.10 0.20 0.30 0.10(Rect.) 
kL 1.10 1.18 1.49 2.00 1.22 
k*LH 1.10 1.22 1.50 1.83 1.22 

bounds in the limit of small c. The first set of limits explicitly 
assumed that c remained an order one term, and the second 
limit assumed that kF remained an order one term. The limit, 
for example, in which kF — oo and c — 0 such that kFc 
remains finite would need to be considered separately. 

We next turn to a comparison of the bounds given by 
equations (9), (10), (13), and (14) with bounds that are based 
on area fraction information alone. The simplest of these 
bounds is given by equation (4a) but we eschew any detailed 
discussion of these in favor of improved bounds, which we 
take from Hashin [2]. The bounds are one of a class of 
bounds that are most commonly referred to as Hashin-
Shtrikman bounds. The text by Christensen [3] discusses the 
Hashin-Shtrikman bounds in detail. For the specific ap
plication of interest to us, the Hashin-Shtrikman bounds are 

[2 + (kF-\)c]kF 
kf,H = , (21a) 

[2kF-(kF-l)c]' 

and 

1 + ac 
ktH=- • (216) 

1 -ac 

We can consider the behavior of these bounds in the same 
limits as in the foregoing. Similar conclusions are reached for 
the limits of kF -~ oo and kF -~ 0. The small c limit is of 
special interest, however, and we write, to order c, 

and 

k*LH = 1 + lac (22b) 

Thus, the bounds no longer coincide even in this limit. This 
simply mirrors the facts that the Hashin-Shtrikman bounds 
do not make use of an exact single-body calculation in the 
small c limit and that they do not explicitly exlcude any fiber 
clustering, which was necessary to obtain equation (20). The 
fact that the lower Hashin-Shtrikman bound does reduce to 
equation (20) would be expected by one familar with the 
relationship between the Hashin-Shtrikman lower bound and 
an exact calculation of k* for a suspension that is modeled by 
a concentric cylinder assemblage [2, 3]. 

Referring to equations (10) and (14) the measures of the 

mcrostructure geometry required by the bounds are the area 
fraction of the fibers and the two parameters, 

,.-«.-o[((S=£)V<(i;^ )')„]. 
(23a) 

and 

"-'[{(S^'MCS^)'),]- <*» 
These parameters are functionals of probability densities 
defined on the relative positions of the fibers taken two and 
three at a time. We are interested in the possibility of 
measuring these parameters for a given fiber composite cross 
section and in some indication of the importance of these 
parameters in determining the value of the effective thermal 
conductivity. Thus, we undertook a numerical study in which 
we calculated pM and pF for computer-generated fiber 
composites, evaluated the bounds for the calculated values of 
pM and pF and prescribed values of kF, and compared the 
resulting bounds with those given by Hashin, equation (21a) 
and (216). We next consider this numerical study. 

The computer-generated composites were constructed 
according to the following description. One thousand circles 
of equal radius were located, at random, within a rectangular 
region of unit dimension. The size of the circles were deter
mined by the condition that the area fraction of the 1000 
circles equaled the prescribed area fraction of the total cross 
section. The circles were positioned one at a time, with the 
only constraint placed on the location of any one circle being 
that any location in the square is equally likely, provided the 
circle does not overlap with previously located circles. In the 
event of an overlap, the last positioned circle was removed 
and a new one positioned as if the overlap has not occurred. 
An ensemble of 100 cross sections was generated for each area 
fraction of interest. The only test applied to determine the 
degreee to which the generated ensembles were representative, 
was a test of uniformity. Thus, each of the 100 
cross sections were further subdivided into 25 subsections and 
the variance of the number of circles located in the sub
sections was calculated to be approximately equal to 3. This 
number, being more than an order of magnitude less than the 
mean number of circles (40), was deemed to be sufficiently 
small to accept the ensemble of cross sections as reasonable. 
The values of pM a n d p F were calculated for the ensemble of 
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cross sections according to the following program. First two 
subensembles of field point locations were obtained for each 
of the 100 cross sections by randomly positioning the field 
points in the unit square and noting if the points so located 
were in the matrix or in the fiber. All of the 100 subensemble 
of field points located in the matrix were used to calculatepM 

and all of the subensemble of field points located in the fiber 
were used to calculate pF, according to the expressions in 
equation (23a) and (236). Of course, the absolute size of the 
circles were scaled to be of unit radius before applying these 
formulas. 

The calculated values of pM and pF are summarized in 
Table 1 for area fractions of 5, 10, 20, and 30 percent. Area 
fractions greater than 30 percent are difficult to obtain 
because of the large number of failures obtained in 
positioning nonoverlapping circles in constructing the media. 
Also shown in the figure are the calculated values for 
<l// 'i4 )M, r, being the distance from a field point located in a 
matrix to the nearest inclusion. As discussed previously, the 
value of this average should be c in the small c limit. Finally 
shown in the figure are the values of pM and pF for a 10 
percent concentration of circles for a cross section in which 
the circles are located at the intersections of a square grid. It 
was clear from the calculations that it is reasonable to 
determine values for pM and pF for a given cross section. 
Further, the comparison of the calculated average for 
<l//"i4 )M and the value of c leads to a degree of confidence in 
the calculated values. 

With the calculated values of pM and pF, it is a straight
forward calculation to obtain bounds, for any prescribed 
value for kF. In Tables (2a) and (2b) are summarized 
calculated values for the upper and lower bounds for the four 
concentrations for a kF value of 100 (times the value of the 
matrix). In the tables we include both the bounds containing 
pM and pF information and the bounds of Hashin, which 
depend only on area fraction information. An alternate 
presentation of these same results is given in graphical form in 
Fig. 1. 

It is clear that the upper bound containing pM and pF in
formation lies totally within the Hashin bounds, a heartening 
result. The fact that the lower bound values are, in some 
instances, slightly below the Hashin-Shtrikman bound (in the 
third significant figure) is thought to be a result of numerical 
inaccuracy. It is also clear that for a kF = 100, incorporation 
of two and three fiber-positioning information does result in a 
considerable narrowing of the bounds. Finally, it can be noted 
that the newly calculated bounds lie much nearer to the 
Hashin lower bound than it does to the Hashin upper bound. 
This is consistent with the appreciated fact, already com
mented on, that suspensions for which the lower conductivity 
phase forms connected regions, isolating the higher con
ducting phase, have lower effective conductivity values. The 
manner of generating our composities would appear to 
preclude any possibility of the fibers forming closed contours, 
hence, we should expect the newly constructed bounds to be 
nearer the Hashin lower bound. Finally we can note that the 
upper bound value for the 10 percent concentration for the 
circles positioned on a rectangular grid is measurably lower 
than for the randomly positioned circles. This result might 
also be expected since the retangular grid might be thought of 
as a "well-separated" composite, as compared to the ran
domly positioned case, which might be thought of as a "well-
mixed" composite. This distinction is discussed by McCoy 
and Beran [12] in which a conclusion consistent with that 
reached here was drawn. The fact that the upper bound value 
for the rectangular grid is actually a slight amount less than 
the lower bound value (in the third significant figure) is 
thought to be an insignificant numerical inaccuracy. 

20 

> 10 
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o 

" .1 .2 . 3 

c (Area Fraction) 

Fig. 1 Upper and lower bounds for computer-generated fiber com
posites (kF = 100). Solid line are the Hashin-Shtrikman bounds; 
dashed lines are bounds that incorporate Information of fiber 
positions. 

Summary 
In summary, the effort reported in this paper consists of 

two parts. The first is the derivation of a new pair of bounds 
on the transverse effective conductivity of a fiber composite. 
The newly derived bounds explicitly incorporate some con
figuration statistics, in the form of precisely described func
t ional of joint probability functions on the locations of the 
fibers. The second part is the evaluation of the newly derived 
bounds for a computer-generated model of a fiber composite. 

As noted in the Introduction, an alternate approach, once 
the computer-generated model was constructed, would be to 
exactly calculate the transverse effective conductivity. We 
ignored this approach for two reasons. First, the exactly 
calculated value would apply only to the specific computer 
model for which it was calculated. Any change in any measure 
of the configurational statistics would affect an exactly 
calculated effective property, and, in a manner that is not 
precisely known. The bounds, on the other hand, apply to a 
class of composites; the class is defined by the configurational 
statistics required by the bounds. The second reason is related 
to the first. The motivation of the studies of which the present 
one is an example, is to identify numerical measures of the 
microstructure geometry, which can significantly effect an 
effective property value. The bounding approach enables one 
to accomplish this by systematically incorporating more and 
more refined information of the microstructure geometry, 
within the framework of an exact formulism. In the present 
study, for example, the measures denoted by pM andpF were 
identified. Further, we showed that pM and pF are easily 
determined for a given microstructure geometry and that the 
incorporation of the information in pM and pF results in a 
significant reduction in bound pair separation. 

Identifying significant numerical measures of the 
microstructure geometry, from the perspective of their in
fluence on effective property values, is not an end to itself. A 
later step is to relate the identified numerical measures either 
to the "manufacturing process" for constructing the com
posite or to an alternate, more intuitive, description of the 
microstructure geometry. Only then will it be possible to 
exploit variations in the configurational statistics of a 
composite material in the search for improved designs. We 
plan to continue the study reported, herein, by constructing 
computer-generated models according to different 
prescriptions and in measuring the changes in/?M andp/r. 
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Plasticity Analysis of Fibrous 
Composites 
The elastic-plastic behavior of composites consisting of aligned, continuous elastic 
filaments and an elastic-plastic matrix is described in terms of constituent 
properties, their volume fractions, and mutual constraints between the phases 
indicated by the geometry of the microstructure. The composite is modeled as a 
continuum reinforced by cylindrical fibers of vanishingly small diameter which 
occupy a finite volume fraction of the aggregate. In this way, the essential axial 
constraint of the phases is retained. Furthermore, the local stress and strain fields 
are uniform. Elastic moduli, yield conditions, hardening rules, and overall in
stantaneous compliances, as well as instantaneous stress concentration factors are 
derived. Specific results are obtained for the case of a Mises-type matrix which 
obeys the Prager-Ziegler kinematic hardening rule. Any multiaxial mechanical load 
may be applied. Comparisons are made between the present results and certain 
other theories. 

1 Introduction 

Metal-matrix composites reinforced by continuous elastic 
fibers may experience an appreciable amount of elastic-plastic 
deformation which is caused by plastic flow of the matrix. 
Although the fibers strengthen the matrix substantially, and 
are the principal source of the high composite stiffness, their 
presence has a relatively small effect on the overall stress level 
that causes the onset of plastic yielding. 

For example, in our recent experimental study of the boron-
aluminum system [1], it was found that the initial yield stress 
of annealed unidirectional and laminated plates was ap
proximately equal to 20-25 percent of their ultimate strength. 
This and other examples, as well as theoretical calculations 
described in references [2, 3] suggest that elastic-plastic 
deformation is at least as common in structural applications 
of metal-matrix composites as the elastic deformation, 
because the plastic range occupies the major portion of the 
total strength range. To take advantage of the high strength 
and stiffness of the metal-matrix composite materials, it is 
necessary to admit working loads that exceed their elastic 
limits. 

However, the existence of an extensive plastic deformation 
range does not imply that metal-matrix composites may 
experience large plastic strains before failure. In most cases 
the failure strain of the composite will be of the same order of 
magnitude as that of the elastic fiber. As pointed out in [4], 
the failure strains of the fibers used in actual material systems 

0.005 for the FP fiber, t o e { i 0.014 for / vary from e 
certain graphite fibers (T-50) . For the boron fiber, e 
0.009. These magnitudes indicate that the deformation of 
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metal-matrix composite materials, is limited to the range of 
small strains. When compared with the initial yield strain of 
as-fabricated aluminum matrices, which is approximately 
equal to 0.001, the fiber failure strains suggest once again that 
elastic-plastic deformation will dominate the response of the 
composite. 

Under these circumstances, plasticity analysis of metal-
matrix composite materials must emphasize accuracy in the 
small strain region. This requires that the theory be based on a 
micromechanical model that allows for the derivation of the 
overall response from the properties of the constituents and 
from their mutual constraints which are indicated by the 
geometry of the microstructure. Furthermore, it is probably 
obvious that the theory cannot admit certain assumptions that 
are often accepted in plasticity or in large strain theories, such 
as rigid-plastic behavior of the phases, inextensibility of the 
fiber, or plastic incompressibility of the composite medium. 

Formulation of constitutive relations for elastic-plastic 
composite materials has been impeded by the lack of 
reasonably simple solutions which would describe, at least 
approximately, the local plastic deformation of the matrix in 
the vicinity of the fiber. Progress has been made only in 
special cases, e.g., in axisymmetric deformation of elastic, 
perfectly plastic matrices reinforced by circular, cylindrical 
elastic fibers, subjected to mechanical loads and uniform 
thermal changes [5-7]. 

Attempts to model elastic-plastic deformation of fibrous 
composites under more general loading conditions, and for a 
wider range of constituent properties, have relied on 
numerical solutions of the local problem [8-10] obtained for a 
specific loading path, usually for uniaxial tension transverse 
to the fiber direction. Results of these studies cannot be used 
to construct general constitutive relations. However, they 
illustrate the complexity of the local fields and indicate the 
need for simpler microstructural models. 
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This paper presents constitutive relations for elastic-plastic 
deformation of fibrous composites in the small strain range. 
The development is based on a specific material model, 
described in Section 4, which simplifies the geometry of the 
microstructure, but admits, in general, any constitutive 
relations for the constituent phases. The model permits 
construction of yield conditions, hardening rules, and flow 
rules for the composite aggregate in terms of local properties 
and volume fractions of the phases. Response to any 
mechanical as well as thermal loading path can be obtained. 
However, for reasons mentioned in Section 6.1, we limit our 
attention to mechanical loads. Certain applications of the 
theory are discussed. A more extensive description of specific 
results is presented in related papers [2,4, 11, 12]. 

2 Notation 

We shall use a notation which is formally similar, but not 
identical to that introduced by Hill [13, 14]. In the present 
work, except as noted, six-dimensional vectors are identified 
by lowercase, boldface Greek letters, e.g., a, e; 3 x 3 matrices 
are denoted by lowercase, boldface Latin letters, e.g., a, c; 6 
x 6 matrices are denoted by uppercase, lightface, Latin 
italicized letters, e.g., A, B, L, M, and A~x denotes the in
verse of A, defined when it exists, to satisfy 

AA~]=I=A-]A, 

where / is a 6 x 6 unit matrix. We shall also write a ~' for the 
inverse of a, defined, when it exist, to satisfy, 

a a _ l = I = a~ 'a 

where I is a 3 x 3 unit matrix. Scalars are denoted by 
lowercase, lightface Latin and Greek letters. 

To describe the elastic properties of a transversely isotropic 
medium we shall use the symbols EA , GA, vA , ET, GT, vT for 
the axial and transverse Young's and shear moduli, and 
Poisson's ratios. In addition, we shall also use related Hill's 
constants defined as follows [15] 

k= -ETGT/[ET-4GT + 4vA
2GTET/EA] 

l = 2kvA, n = EA+l2/k, m = GT, P=GA. (1) 

Other useful connections are: 

ET = 2(1 + vT) GT = 4km/ {k+tm) 

vT = (k-tm)/(k + tm), 

where? = 1 + (4ki>A
2)/EA. 

For an isotropic solid, equation (1) can be simplified with 
the following equalities: 

l = k — m, n — k + m, m=p, 

E=EA=ET, G = GA=GT, v = vA=vT (la) 

Phase moduli will have an index r, e.g., kn Er
A, such that r 

= f, m, for fiber, and matrix, respectively. 

3 Governing Equations 

A representative volume Kof a binary composite contains a 
large number of aligned cylindrical inclusions embedded in a 
continuous matrix and is typical of the microstructure on 
average. The spatial arrangement of the inclusions in the 
transverse plane is such that the composite can be regarded as 
homogeneous and transversely isotropic under uniform 
macroscopic elastic strains. Let do and didenote the uniform, 
overall stress and strain increments applied to V; and daf, 
do,,,, dtf, dtm the volume averages of the stress and strain 
increments in the fiber and matrix, respectively. The volume 
fractions of the phases are cf = Vf/ V, c„, = Vm IV, such that 
Cf + Cm = \. 

The local and overall increments are related by: 

da=Cf d<jf + cm dam; di = cf def + c,„ dtm. (2) 

The consituent properties in the elastic and plastic range are 
defined as: 

dor=Lrdtr, dtr=Mrdor, (r=f,m). (3) 

The matrices Lr, Mr, describe the instantaneous local moduli 
and compliances; Mr = Lr"', if the inverse exists. 

The local averages are assumed to be related to the overall 
quantities in a unique way [13]: 

dor=Brdo, der=Ardi, (4) 

where Br, Ar, are the instantaneous stress and strain con
centration factors. For consistency with (2), these factors 
must satisfy: 

cf Bf + c,„ B„, = I, Cf Af + c,„ A ,„ = I. (5) 

Finally, the macroscopic response of the composite in V at 
each instant of plastic loading follows from (2), (3), and (4), 
as 

do=Lde, di=Mda (6) 

where the overall instantaneous moduli L and compliances M 
are 

L = EcrLrAr, M=Z,crMrBr, (r=f,m) (7) 

providing that Mr = Lr~
l exists. It can be shown that for 

elastic and stable elastic-plastic materials, the matrices Lr, 
Mr, L, and Mhave diagonal symmetry [14, 16]. 

When the constituent properties (3) are specified, the 
overall moduli L or compliances M in the plastic range can be 
found from (7) and (4), providing that the concentration 
factors Ar or Br are known for at least one constituent [13]. In 
this way, the description of the overall response of the 
composite medium is reduced to evaluation of the con
centration factors, which must be found from the solution of 
an inclusion problem. 

4 Elastic Behavior 

Consider again the representative volume V of a binary 
composite that contains a large number of aligned cylindrical 
inclusions or fibers embedded in a continuous matrix. Both 
the inclusions and the matrix may be transversely isotropic in 
their respective elastic deformation ranges; the axis of 
symmetry of each phase is parallel to the fiber axis. To 
simplify the elastic-plastic solution of the inclusion problem, 
we assume that each of the cylindrical fibers has a vanishing 
diameter, and that the fibers occupy a finite volume fraction 
of the composite. In this way we retain the micromechanical 
character of the model, and the essentia] axial constraint of 
the phases. Furthermore, the local stress and strain fields in 
the constituents will be uniform. The assumption affects 
interaction of the phases in the transverse plane, and thus the 
overall behavior of the composite aggregate. These effects, 
which are relatively small, are discussed in Section 6.2. 

The overall elastic properties of the composite aggregate 
can now be evaluated with the procedure outlined in Section 
3. Coordinates x, (/ = 1, 2, 3) are associated with the 
representative volume V, such that x3 is in the fiber direction, 
and X\, x2 are in the transverse plane. The constraints between 
the fiber and matrix phases implied by the material model lead 
to the following form of (2): 

ddu =do{ = dafj for ij * 3 3 (8) 

dan=cfdaf
n+cmda1\ (9) 

deij = c/dej + cmde'/J for y jt 33 (1.0) 

de3i=de{2=def3 (11) 
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Let the overall stress and strain increment vectors be defined 
as 

da = [dau da22 da33 dan ddn da2i]
T 

di = [din di22 dei3 2den 2din 2di2i]
T, (12) 

with analogous forms for the phase increments d<jr, dtr, r=f, 
m. These vectors can be introduced into (6) together with the 
matrices L and M, which are: 

L = 

k+m k— 

k — m k + 

1 I 

0 

m I 

m I 

n 

m 

0 

0 

0 

0 

p 

0 

0 

0 

p 

M=L~ (13) 

and also into (3) with analogous expressions for Lr, Mr, 
providing that the inverses of L andL r exist. 

The unknown overall moduli in (13) can be evaluated from 
(7), using the concentration factors Ar and Br in (4). The 
concentration factors for the phase r are obtained from 
solutions of inclusion problems for the fiber and matrix. For 
the present composite model, with phase constraints given by 
(8)-(l 1), the individual coefficients in Ar and Br can be found 
from solutions of equations (3)-(5), and (8)-(ll), for sub
sequent single, nonzero entries in the overall stress and strain 
increments (12). In the case of elastic deformation of the 
phases we attach an additional subscript e, i.e., Bme, etc., to 
denote elastic concentration factors. The results are: 

r\r„ — 
a; 

0 

0 

ar" 
> B r e -

b; 

0 

0 

i 
(14) 

where 

a; = 1/2 

(k/kr + m/mr) (k/kr-m/mr) (l-lr)/kr 

(k/kr-m/mr) (k/kr + m/mr) (l-lr)/kr 

0 0 2 

n = cmn,„+cfnf-[c/cm(l/-lm)2/(cfkm+cmkf)] 

f/mf + c„,/mm) 

P = {cf/pf + cm/pm)-x. (16) 

When the geometry of the microstructure of a fibrous 
composite is specified only in terms of the volume fractions of 
the phases, the overall elastic moduli can be bracketed by 
rigorous bounds [15, 17, 18]. The results (16) obtained with 
the composite model will be now compared with the bounds. 

We note that the moduli k, I, and n satisfy the universal 
connections [15]: 

k—kf k — km l—Cflf- ~ ' 

l-h I-In 
(17) 

'/ <-<m n-cfnf-cmnm 

The exact lower bound kL on the modulus k was obtained in 
[15, 17] as: 

kL = [cl/(kl + m2) + c2/(k2 + m2)]-1 - m2, (18) 

with phases numbered so that m, > m2. It is seen that k < 
kL. Since / and n in (16) are related to k by (17), these moduli 
will also be lower than their respective lower bounds. The 
same is true for the lower bounds on/? and m [18]: 

Pt=P2[C2P2+(i+c,)Pi]/[c2Pi +(l+cl)p2]>p 

mL=m2[{c2~-b2c2)m2 

+ (c, + b2c2)m]]/[c2b2m] +(1 -c2b2)m2] >p 

with phases numbered so that/?, > p2, and {m{ - tf^X^i -
k2) > 0; b2 = (k2+2m2)/[2(k2+m2)]. 

As one might expect, the simplifications required for 
tractable solutions of elastic-plastic inclusion problems render 
the model inaccurate in the elastic range. However, in actual 
composite systems, e.g., in the B—Al system at low and 
moderate fiber concentrations (cf < 0.5), the moduli (16) 
differ only slightly from the lower bounds [19]. 

Correct values of elastic strains can be obtained with the 
composite model if the elastic moduli of the matrix are ad
justed in such a way that the composite moduli (16) are within 
the bounds. The adjustment requires a choice of admissible 
values of overall moduli (denoted by a prime) k' (or « ' , or 
l'),m', and/? ' , which are within the bounds. Possible choices 
are the self-consistent estimates [20]. These can be substituted 
for the overall moduli in (16) and the equations solved for the 
appropriate matrix moduli. The adjusted matrix moduli then 

a/= 

nlmr 

0 

0 

Ec 

0 

( 1 - C r ) 

0 

PlPr 

0 

ar (1 

0 "" 

0 

PlPr _ 

0 

Ec 

~cr)ar 

» 

0 

0 

Er
A 

b ; = 

r=f, m; 

Ec=cfEfA+cmE%; as={vfAEm
A-vm

AEfA) = -am, (15) 

and I is a 3 x 3 identity matrix. 
The concentration factors Are, Bre, and equations (7) and 

(13) yield the following values of the overall moduli: 

k = {cf/kf + cm/k,„)-[ 

I = (cmkfl,„ + 
Cfkm h ) / ( cfkm +cmkf) 

l 

Journal of Applied Mechanics 

k'm — cmk'kf(kf-Cfk') 

m'm = c,nm'mf(mf-cfm') 

P'm = cmp'pf(pf-cfp'). (19) 

When these adjusted matrix moduli are used in (16) and 
(17), the composite model yields correct values of overall 
elastic strains. 

The elastic thermal expansion coefficients a and /3 of the 
composite medium can be found from the universal con
nection [7]: 

k-kj ka + ip-Lcr(krar + lrl3r) 

l-l !a + nP-Lcr{lrar + nrl3r) 
(20)' 

and equation (17). 
The coefficients ar, j3r, and a, /3, in (20) describe, 

respectively, the thermal expansion in the transverse plane, 
and in the longitudinal direction. Specifically, for an isotropic 
material with a linear thermal expansion coefficient a: ar = 
2a, fir = a. 

Equation (20) is the corrected form of equation (39) in reference [7]. 

JUNE 1982, Vol. 49/329 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 1 Kinematic hardening in matrix and composite stress spaces 

5 Elastic-Plastic Behavior 

5.1 The Yield Surface. We assume that the fibers are 
elastic until failure, whereas the matrix obeys a yield con
dition f(am) = 0. Then, for a stress-free composite material, 
the initial yield condition in the overall stress space is, ac
cording to (4), 

/ ( £ , „ » = 0. (21) 

In the present composite model the local stress fields are 
uniform; the stress concentration factor Bme is given by (14). 
The overall yield condition (21) can be constructed for any 
given form off(a,„) = 0. 

For example, in the case of a Mises-type matrix, (21) 
becomes: 

f=oT 

(b„',)rcb'„ 0 

31 
Y2=0, (22) 

where c is a symmetric 3 x 3 matrix such that cu = c22 = c33 

= l , a n d c | 2 = Cj3 = c23 = —Vi\ Yis the tension yield stress 
of the matrix; b„', and I are given in (14). Here and in the 
sequel we will assume that a Mises-type matrix is elastically 
isotropic, with equations (la) applied to its elastic moduli. 

Next we consider the motion and possible distortion of the 
yield surface in the overall stress space during plastic 
deformation of the model composite aggregate. In general, 
there are two factors that determine the position and shape of 
the overall yield surface after a plastic load increment. One is 
the interaction between the phases, which leads to constraint 
hardening. Another is phase hardening, due to local work 
hardening of the plastically deforming phases. The constraint 
hardening of a fibrous composite material with a nonhar-
dening matrix was studied earlier [6, 7], for the special case of 
axisymmetric deformation. We recall that in the axisymmetric 
case the yield surface had experienced pure translation in the 
overall stress plane, and that the motion of the center of the 
surface was determined by two vectors, one in the a33 

direction and one in the direction of transverse hydrostatic 
stress (<7n + cr22)/2. Each of these translation vectors 
corresponded to a specific constraint between the elastic fiber 
and the plastically deforming matrix. 

The constraint hardening of the present composite model 
can be regarded as a special case of the earlier results. The 
model prescribes only a single, axial constraint between the 
phases, specified by equations (9) and (11). This constraint 
can cause axial residual normal stress components 033 (r = / , 
m), to exist in the elastic fiber and in the plastically deformed 

matrix. When the residual stress (j33 is accounted for in the 
yield condition (21), it will appear there as a translation factor 
causing motion of the original yield surface in the direction 

In addition to constraint hardening, the composite may 
exhibit phase-hardening effects which originate in the matrix. 
Since most actual metal-matrix composite systems have 
aluminum matrices, and these harden kinematically at small 
plastic strains [21, 22], we shall direct our attention to the 
particular case of a kinematically hardening matrix. Certain 
results for a composite with a nonhardening matrix will 
follow from this development. 

Consider an isotropic elastic-plastic matrix with kinematic 
hardening such that if the initial yield surface is given by the 
condition f(a,„) = 0, then any subsequent matrix yield surface 
is 

f(am-a„,) = 0. (23) 

In analogy with (22), the overall yield surface for the 
present composite model will be 

/ ( a - « ) = 0, (24) 

where a is an unknown translation vector which contains both 
constraint and local hardening contributions. To determine 
the magnitude of da corresponding to a plastic loading in
crement do, we apply a loading/unloading sequence ±da in 
the overall stress space. The corresponding matrix stress 
increment is, as in (4), 

da,„=Bmda, (25) 

where Bm is an instantaneous stress concentration factor 
which will be determined in Section 5.3. In the case of elastic 
unloading Bm = Bme (14). At the end of the loading path 
±da, the residual stress in the matrix will be: 

dcr, (Bm-Bnw)dd. (26) 

This is illustrated in Fig. 1 which shows the an CT33-plane 
section of the overall and local yield surfaces; ABC is the 
overall loading path, ABC is the local response. 

During the loading part of the applied sequence the two 
surfaces will experience translations da and da„,, respectively, 
which are related by 

Bmeda = dot,,, - darm. (27) 

These magnitudes correspond to vectors CD and CD in Fig. 
1. From (26) and (27): 

da = B J da„, - (Bj B,„ -1) da. (28) 

As an example of kinematic hardening of the matrix we 
consider Prager's hardening rule with Ziegler's modification 
[23] and a matrix of the Mises type. The hardening rule is 
based on the assumption that the local translation is of the 
form 

da,„ = dp.m (am - a„,). (29) 

Here, d/j.,,, is a scalar multiplier that can be found from the 
equation of consistency df = 0, which, in conjunction with 
(23) gives 

(df/dam)T{dam~dam) = 0. 

From (29) and (30): 

dp-,,, = [(df/dom) TdoJ/[(df/da,„ )T(o„, - a,„)}. 

For a Mises-type matrix, equation (23) becomes 

/ ( "m ~ <*m) = {"m ~ «„, ) TC((X,„ - a,„ )~Y2=0, 

where 

c |0 

(30) 

(3D 

(32) 

C--
0 31 

with c as in (22). One can find that 
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(d//d<x„,) = 2C(<r„, - a , „ ) , 
and 

(a//a<r„,) r (df/dom) = 4(<r„, - «„,) rCC( f f„ - <*„,). (33) 

Hence (31) can be written in the final form 

dix,„ = (1 / Y2)(a„, - am) TC da,„, (34) 

and substituted into (29). This permits evaluation of da from 
(28) and completes the formulation of the overall hardening 
rule for the composite aggregate with elastic fibers and a 
kinematically hardening elastic-plastic matrix. 

Specific results obtained with this formulation from (28) 
are: 

day = da"/ for //V33; 

da33 = (cfaj/Ec)(da'{\ + da'-l\) + (Ec/Em)da'{,
3 

+ (l/Em)(c/a,„-EcB'3"])duu 

+ (l/Em)(Cjam-EcBf2)da22 

+ (l/Elll)(Ell,-EcBf3)dd33 

~ (El./Em)(B%dal2 

+ B'&doH+B'&don). 

The matrix material is elastic-plastic, and, if it is stable, 
then its plastic strain increment is normal to the yield surface. 
This implies that 

de,„=dt'
!
m+dC =MmeBmda+d\m(df/dam). (37) 

B,„ represents the instantaneous matrix stress concentration 
factor; d\m is a scalar multiplier; the elastic compliance 
matrix Mme of the matrix material follows again from (13), 
with connections (la). 

To determine the scalar d\,„, it is necessary to specify a 
flow rule associated with the Ziegler's modification of 
Prager's hardening rule. Then, rfX,„ is obtained in analogy 
with equation (2.9) in [23] as 

(df/d<jm)Tda,„ 
d\„, = (38) 

Hm(df/da)T(df/da)' 

where the matrix hardening parameter H,„ can be expressed in 
terms of stress and deviation strain invariants dam = (3/2 
dovd&g)*, def„ (2/3de';;pde^)'' as: 

da,,, = Hmdil!„ (39) 

In the case of a Mises-type matrix, equation (23), the form 
(38) becomes 

d\„ 
3//„,(r2+3[(<7, : 

(o,„ - a,„) TC do,h 

-an"')2+(au"'-an'")2+(o2i'"-c ')2]} 
(40) 

Here, B"j are coefficients of the instantaneous matrix stress-
concentration factor B,„ (25), which will be determined from 
the matrix flow rule in Section 5.3. The coefficients af, a,„, Ec 

were introduced in (15). The matrix is now regarded as 

A more convenient formulation of equations (37)-(40) is 
obtained with the following notation. Let the vector >/ be 
defined as 

V = IV i V2 Vi V4 Vs Vi ]T = 2qC (a„ 

with the scalar q given by 
• « m ) ; (41) 

-("1 - « . . ' " ) - {<J2im - « 2 2 " ' ) + 2 ( q 3 3 m - a i 3
m } 

6{Y2 + 3l(a]2'"-a]2'")2+^n'"-a]3"')2+(a2i'"-a23'")2]} 
(42) 

elastically isotropic, with connections (la) applied to the 
moduli. 

These results permit the evaluation of the current yield 
surface at the end of each loading step. This can be done using 
equation (24), or the more explicit form (22) with a replaced 
by (a - a). 

We observe that the first two terms in (35) represent a 
contribution to dd3} from the hardening of the matrix, 
whereas the remaining terms are caused by constraint har
dening. If the matrix material does not harden, the composite 
exhibits only constraint hardening. The hardening rule of the 
aggregate is then obtained by prescribing da„, = 0 in (23), 
(28), and (35). One recovers only a single nonvanishing vector 
da3} which determines the translation of the center of the 
overall yield surface. This, of course, is the consequence of 
the constraints (9) and (11) specified by the material model. 

5.2 Overall Strains. The composite strains at each stage 
of the loading program can be determined from the volume 
averages of strain increments in the phases, equation (2). If 
the fiber remains elastic until failure, the strain increment in 
the fiber is 

dif = Mredof = MfeBfdd, (36) 

where the elastic compliance matrix Mfe is obtained by 
substitution of appropriate fiber moduli into (13). Bf is the 
instantaneous stress concentration factor of the fiber which 
will be found in the sequel. 

and with C taken from (32). 
Then, 

d\„ = (qvTBm/Hm-q3)dd, 

(df/da„,)=r,/q. (43) 

The overall strain increment di follows from (10), (36), 
(37), and (43): 

di=cfdif + cmdtm 

= [cfMfeBf + cm(Mme+r17,r/HmV3)Bm]dd (44) 

This is the overall constitutive equation of the elastic-plastic 
fibrous composite material. The factors in the square brackets 
depend only on the current stress state. The stress con
centration factors B,„ and Bj remain to be determined. 

5.3 Instantaneous Concentration Factors. We now 
proceed to evaluate the instantaneous stress concentration 
factors Bf and B,„. As in the elastic case, we utilize the 
constraint equation 

de33=def33=de?3 (11) 

and the equilibrium conditions 

with 

doij=dorij=do>>], (</*33) 

do33=cfdcff
33+cmda3"3 

(8) 

(9) 
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Using (37) and (43) we find the plastic, axial strain in- where: 
crement in the matrix as 

deff = d\,„(df/d<j'3"3) 

= dkm[-(<j'{\-a^)-(o2"2-cx'2\) 

+ 2 (08 -a? 3 ) ] 

= (V
T/Hm)da,„. (45) 

The total axial strain increment in the matrix follows from 
(37) and (45) as: 

deft = (ij i /Hm - vm IEm) do>{\ + (r,2 IHm - vm IEm) dog 

+ (rl3/Hm-l/Em)da3"3 

+ (ij4rfof2+ij5rfof3+ij6rfoS ) / / / „ . (46) 

The axial strain increment in the elastic fiber is: 

do{3 = - O V ^ W , 

- ( ^ / i ^ ) ^ + ( 1 / ^ ) ^ 3 3 . (47) 

The constituent strain increments (46) and (47) can now be 
substituted into (11), and the local stress increments in the 
resulting equation, with the exception of da'33, can be ex
pressed in terms of the overall stress increments with the help 
of (8) and (9). This procedure leads to the evaluation of the 
sress concentration factor B„, in 

da,„=B„,da. (25) 

The result is: 

B„ 

1 

0 

Din 
#31 

0 

1 

Dm 

0 

0 

0 

Din 
°33 

0 

0 

Dm # 3 4 

0 

0 

Dm 
" 3 5 

I 

0 

0 

Dm 
# 3 6 

(48) 

where 

and 

«Ti = (cf/h)(Hmam-E^AEmr,l) 

B'3\ = (cf/h)(Hmam-EfAEmV2) 

Bf3 = H,„E,„/h 

B% = -(cf/h)(EfAEmr,4) 

B?s = -(cf/h){EfAEmVi) 

B'3\ = -(cf/h)(EfAEmV6) 

h = HmEc + cfE
f
AEmt)3. 

(48a) 

In the absence of phase hardening in the matrix, i.e., for 
Hm = 0 one can derive B™ directly from the equation of 
consistency for the matrix [24], The results are: 

\B>3\ BT2 BT, Bf4 B% B%] 

= I--sTi ~s& 0 -2of2 -2a'{\ -2a?3]/s"33 (48b) 

sT, = ( 2 a f i - o S - 0 f 3 ) / 3 

s'& = (2oS-«?3-of i ) /3 

s% = (2<7f3-af l-a2 '2)/3 

The instantaneous fiber stress-concentration factor B 
follows from (5) and (47) as 

Bf=(I-cmBm)/cf. (49) 

5.4 Overall Compliance. The evaluation of the stress 
concentration factors (48) and (49) makes it possible to write 
the overall constitutive equation (44) in an explicit form. With 
reference to (6), (44), and (49) 

di=Mda (6) 

where: 

M=Mfe + c,„[(M,m -Mft) +Vr,T/(H,„n3)}Bm. (50) 

We recall that Mme and Mfe are given by (13), r; by (41) and 
(42), Hm by (39), and Bm by (48). After substitution from 
these equations into equation (50) one obtains the following 
expressions for the coefficients of M: 

Mu = (cm/Em+cf/E^T)-samB'3"1 

+ srn (cfa,„ -EcBTi)/(cfri3) 

Ml2 = -(clnVm/E„,+cfv
f
T/Ef

T) 

-samB'ti +sr,2 (cfa„, -EcBR)/(cfto) 

M]3 = -vfAlEfA-\cml(CjElA)\B3\ 

MH = sri4(cfam-EcB3"])/(cfri3) 

M15 = ij5M14/ij4, M16=7/6M14/ij4 

M22 = (cm/Em+cf/EST)-samB?2 

+S7l2(c/am-EcB3"2)/(c/r,i) 

M23 = -vf
A/EfA-lcm/(cfErAy\BT2 

M24 = sr)4(cfam-EcB%)/(cfri}) 

M25 = 7)5M2 4/T}4 , M26 = rj6M24/?j4 

M33 = (\-c,„B?3)/(cfEfA) 

M34 = srl4(Em-EcB3"3)/(cfr,3) 

M3S = r)5M34/r)4, M36 = V6M34/ri4 

MM = (cm/G,„+cf/GA)-sr,4EcBf4/(cfn3) 

M45 = -sV5EcB^/(.cfri3) 

M<6 = V6M4S/r,5 

M55 = (cm/Gm+c//GA)-sVsEcBT5/(cfV3) 

MS6 = -sni6EcB'3"5/(cfri3) 

M66 = (cm/Gm+c//GfT)-sn6EcB3"6/(cfrl3), 

where: 

* = cml(EmEfA) 
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a,„ = vmEf
A-i/AEm, 

and the various axial and transverse moduli are given by (1). 
Although (50), as written, is not applicable when the matrix 

does not harden, i.e., H,„ = 0, it is possible to evaluate the 
overall compliances for this particular case [24]. The result 
can be obtained by substituting the Bf- values from (486) into 
the preceding expressions for My. However, for certain 
loading directions, e.g., for pure shear, many coefficients of 
M are unbounded. Therefore, the behavior of fibrous 
composites with perfectly plastic matrices should be described 
in terms of the overall stiffness matrix L, as in [7]. The 
analysis of this special case for general mechanical loading is 
beyond the scope of the present paper. 

6 Comparison with Related Results 

6.1 Axisymmetric Deformation. The elastic-plastic 
response of fibrous composites to axisymmetric mechanical 
loads and to uniform thermal changes has been described in 
references [6] and [7], The models used in these studies in
cluded the composite cylinder model as well as variants of the 
self-consistent scheme. The model results were compared with 
finite element analyses of composite cylinder and regular, 
fiber array representations of the composite aggregate, and 
also with selected experimental results [25]. These com
parisons indicated that the composite cylinder model [6], as 
well as certain modified self-consistent schemes [7] give very 
accurate predictions of both overall behavior and local 
stresses during axisymmetric deformation of fibrous com
posites. 

Therefore, it is of interest to examine the response of the 
present composite model in the axisymmetric loading case. 
The initial yield surface equation (22), can be expressed in the 
following equivalent form: 

k\\ (6fl + ff22) + £33 CT33 + 2^12 ffl 1 &22 + 2^13 ff,, S33 

+ 2k23a22an+3(a2
l2 + a2

i3 + a2
2i)-Y

2=0, (51) 

where: 

kn = <P-d+l, k'n = £ , i - 3 / 2 

*n = k~2i=g(d-\/2), k33=g2, 

Model 

Fig. 2 Initial yield surfaces of the present model and of the composite 
cylinder model [6, 7] in the axisymmetric overall stress plane for a 
specific B-AI system 

and (15): 

d=cfa,„/Ec, g=E,„/Ec. (51a) 

Let the axisymmetric stresses be denoted as 

0-, =(CTM + a 2 2 ) / 2 , a2 = ff33 (52) 

Then, the initial yield surface (51) in the axisymmetric stress 
plane (52) becomes: 

l(l-2d)dl-ga2]
2 = Y2. (53) 

To illustrate the differences between the bilinear form (53), 
and the elliptical, initial yield surface for a composite cylinder 
model in the ax a2-plane, we plot the respective results in Fig. 
2 for a specific B —Al system. It is clear that the yield surfaces 
almost coincide at low values of o\/Y, and particularly so in 
the case of plane stress loading of the lamina, where the 
composite model limits the transverse hydrostatic stress a{ to 
ICT]/YI < 1/V¥. On the other hand, relatively poor agreement 

is obtained in the presence of high hydrostatic stress. 
This observation is significant in evaluation of the 

suitability of the present composite model for thermoplastic 
analysis of fibrous composites. We recall that when, in the 
absence of mechanical loading, a uniform thermal change is 
applied to a fibrous composite with isotropic phases, the 
initial yield surface experiences a translation in the direction 
ffi = a2, until it intersects the origin of stress coordinates [3, 
2, 25]. This translation affects both yield surfaces in Fig. 2; its 
magnitude, which is indepedent of the choice of the model, is 
given by equation (16) in Reference [3], or by (41) in [7], It is 
obvious that the thermal change needed for initial yielding in 
the composite cylinder model will be considerably smaller 
than that predicted by the present composite model. Also, one 
may easily construct thermal loading sequences in which the 
two models will produce entirely different predictions of 
overall thermal strains. The case of cyclic thermal loading is a 
particularly useful example of practical significance. 

However, it appears likely that the present composite 
model will give adequate predictions of overall strains under 
loading conditions that are characterized by large, 
monotonic, thermal changes. We derive this expectation from 
the results obtained with the unmodified self-consistent model 
(Fig. 7 in [7]), which is similar in its axisymmetric response to 
the model used in the present paper: Note the similarity 
between Fig. 2 here, and Fig. 2 in [7], Unfortunately, the 
unmodified self-consistent model predicted entirely erroneous 
microstresses after large, monotonic, thermal changes (c.f., 
Table 1 in [7]). A similar difficulty may be encountered in 
analogous applications of the present composite model. In 
view of these qualifications we feel that, in its present form, 
the composite model is not entirely suitable for thermal 
analysis. 

6.2 Transverse Tension. The elastic-plastic deformation 
of a unidirectional lamina in simple tension applied in the 
direction perpendicular to the fiber has been studied by 
several authors who used finite element analysis of regular 
fiber arrays. The results obtained by Needleman [9] for rigid 
circular fibers in a matrix exhibiting isotropic hardening, are 
the most suitable for comparison with those obtained with the 
present model. It was found that at low-fiber volume con
centrations the present composite model predicted flow stress 
levels similar to those obtained by Needleman. At higher fiber 
volume fractions the model underestimated the flow stress. 

6.3 Hill's Anisotropic Yield Criterion. In recent years, 
the anisotropic yield criterion proposed in 1948 by Hill [26] 
has been applied by several authors to elastic-plastic analysis 
of fibrous composites. The criterion, which was designed to 
account for anisotropic behavior of metals, rather than 
fibrous composite materials, implies that the superposition of 
the hydrostatic stress does not influence yielding, and that 
there is no Bauschinger effect. 
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It is well known that neither of these implications are valid 
in the case of fibrous composites. For example, it has been 
shown that the compressibility of fibrous composites is of the 
same order of magnitude in the elastic and plastic defor
mation modes [6]. In view of the extensive plastic defor
mation range of these materials, assumptions that neglect 
hydrostatic stress effects on overall plastic yielding appear to 
be entirely unjustified. Additional results supporting this view 
were presented by Lin et al. [27]. This aspect of the theory is 
especially significant in the case of thermal loading, where the 
assumption of overall plastic incompressibility would lead to 
the erroneous conclusion that no plastic yielding may take 
place due to differential dilatation of the phases. This can be 
seen from Fig. 2 and the discussion in Section 6.1. In a 
plastically incompressible material the yield surface in the 
axisymmetric ax a2 -plane must consist of two linear branches 
parallel to the hydrostatic direction at = a2. We recall that 
this is also the direction of the thermal loading path in binary 
composites with elastically isotropic phases. 

One can find from (51) that under a hydrostatic stress state 
*i I = 2̂2 = o» = ao. the composite model indicates the onset 
of yielding at 

a0=±Y/(g + 2d-\). 
The absence of the Bauschinger effect, i.e., of kinematic 

hardening in the Hill's anisotropic yield criterion excludes 
consideration of constraint hardening, and also of kinematic 
phase hardening in the matrix. Of course, constraint har
dening is an essential feature of plastic behavior of metal-
matrix fibrous composites, which had been well established, 
both theoretically and experimentally, even in the early 
studies of the subject [28, 29]. It must be accounted for in any 
serious attempt to develop a realistic theory. 

6.4 Invariant Form of the Yield Condition. As pointed 
out by Hill [5], and by Mulhern, Rogers, and Spencer [30], the 
yield function / , equation (22), for a transversely isotropic 
material must be invariant under rigid body rotations about 
the fiber axis x}, and also under the transformation x{ = -
x3. Therefore, the yield function can be expressed in terms of 
the transversely isotropic invariants of ay. The yield condition 
(22) can be rewritten in terms of four of these invariants. The 
result is: 

/ = J 7 

where 

(I-2d)2 -g(l-2d) 0 0 

-g(l-2d) g2 0 0 

0 0 3 0 

0 0 0 3 

j - r 2 = o , 

J = [7, J2 J3 J,]1 

Vi(an+a22), J2 = 033. 

and 

Jx = 

Ji = (ah + ahV/2, / 4 = \lMou-a22)
2 + o\2}Vi, 

with constants d and g given by (51 a). 

7 Discussion 

The present material model, by virtue of the assumption 
that the fibers have a vanishingly small diameter, offers 
certain advantages which are essential in the development of 
plasticity theories of fibrous materials. The most important 
feature, of course, is the existence of uniform strain fields in 
the phases. As a result, one can derive analytical expressions 
for overall compliance of the aggregate in terms of the local 
properties and volume fractions of the phases. Indeed, the 

model can be utilized well beyond the scope of the results 
presented herein. Obvious extensions may be made to 
composites with matrices following other hardening rules, as 
well as to aggregates reinforced with plastically extensible 
fibers, and thus into the finite deformation range. Further 
modifications can account for time-dependent behavior of the 
phases. 

Of course, these advantages must be balanced against other 
considerations, such as the accuracy of the overall response 
predicted by the model. As noted in Section 4, the model 
underestimates elastic moduli of the aggregate, but only in a 
minor way and, in any event, this defect can be rectified as 
indicated by equation (19). Of greater concern is the behavior 
in the plastic range, namely the low-constraint hardening rates 
in the transverse direction at high fiber concentrations (c.f., 
Section 6.2), and the shape of the overall yield surface in the 
axisymmetric plane, Fig. 2. These aspects of the model 
predictions indicate that applications of the theory should 
prefer materials with low to moderate fiber densities, and 
stress states with low isotropic components. Applications to 
thermal loading problems require further theoretical work. 

However, the tendency of the model to overestimate the 
magnitudes of overall plastic strains is not necessarily in
convenient in applications to composite structures in which 
one seeks to determine maximum deflections or permanent 
strains. Also, as pointed out in [4], plastic deformation of the 
matrix generally leads to greater stress concentration in the 
fibers. Therefore, the model will often overestimate the fiber 
stresses, and thus provides an additional margin of safety in 
strength calculations. The requirement of low-applied 
isotropic stresses does not affect applications of the model to 
laminated plates, which are of major practical interest. 

The model would not be suitable for problems involving 
metal forming, where one might desire to determine upper 
bounds on instantaneous moduli. The use of the self-
consistent model, which generally overestimates the overall 
moduli and initial yield stresses, and underestimates plastic 
strains would be indicated in such instances, which are not 
very likely to arise in metals reinforced by brittle fibers. 

From the physical standpoint, the assumption of a 
vanishing diameter fiber appears to be more acceptable in 
materials reinforced by very thin fibers, such as the FP, or 
graphite (T-50) fibers, which have diameters equal to 20, and 
1.25 jum, respectively. These are of the same order of 
magnitude or less than the aluminum matrix grain size. In 
contrast, the boron or SiC filaments have diameters of about 
140 /im, and usually form monolayers in laminated struc
tures. A different modeling procedure may be indicated in 
certain applications of these materials. 
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Rotational Sliding of Rubber: 
Second-Order Stresses, Seizure, 
and Buckling 
Measurements are described of the friclional torque required to make a flat-ended 
rubber cylinder, bonded at one end to a flat metal plate, rotate about the cylinder 
axis when the other end is pressed against a flat Plexiglas surface. The contact 
pressure is found to increase on rotation, by an amount proportional to the square 
of the torsional deformation of the cylinder. The frictional torque then tends 
toward extremely large values (seizure) when the imposed compression approaches 
a critical level of about 20 percent, as predicted by theory. The rubber cylinder then 
transforms to a nonuniform state of deformation in which parts of the curved 
surfaces are drawn into contact with the Plexiglas surface. Sliding continues in this 
torsionally buckled state, at relatively low pressures and torques. 

1 Introduction 

When elastic materials are placed in a state of simple shear, 
the theory of large elastic deformations predicts that inwardly 
directed normal stresses, approximately proportional to the 
square of the amount of shear, will be required in order to 
maintain the sheared surfaces at a constant separation [1]. 
This effect has been studied for rubber by Rivlin and 
Saunders [2], and Gent and Rivlin [3], and shown to be in 
good quantitative agreement with the predictions of the 
theory. Thus, when a block of a highly elastic material is 
subjected to forces tending to make it slide against a rigid 
frictional substrate while its compressive deformation is 
maintained constant, normal forces will be generated, 
pressing the block more firmly against the substrate. When 
the compressive deformation exceeds a critical amount of the 
order of 10 percent, sliding is predicted to become impossible 
because the shear-generated normal stresses will increase the 
frictional resistance to sliding in such a way that it always 
exceeds the imposed shear force [4]. The critical amount of 
compression ec at which frictional seizure occurs is predicted 
to be [4] 

ec = \/\2n2 (1) 

for the leading and trailing edges of a sheared block, where ix 
is the coefficient of friction, and 

ec =(C, +C2)/12/x2C2 (2) 

for the side surfaces of the block, where C\, C2 denote the 
two elastic constants in the Mooney form of strain-energy 
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function [5]. The shear modulus G is given by 2 (C, + C2) and 
Young's modulus E by 6 (C, +C 2 ) [5]. For a neo-Hookean 
material, C2 =0 [1], and equation (2) then predicts that ec is 
infinitely large, i.e., that the side regions of the block will 
undergo sliding at any degree of compression. Although 
rubbery solids do not follow the Mooney form of strain-

Torsional Friction Apparatus 

(Exploded View) 

bonded 
rubber 
annulus 

frictional 
surfaces 

bonded 
rubber 
annulus 

Fig. 1 Experimental arrangement tor studying normal and shear 
stresses in rubber annuli subjected to torsional sliding against a 
Plexiglas plate 
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Fig. 2 Representative relations for the compressive force N and ef
fective shear force F as rotational sliding is imposed repeatedly. Initial 
compressive force: 200 N. 
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Fig. 3 Mean sliding force F versus mean total compressive force N for 
unfilled natural rubber annuli sliding against a Plexiglas plate 

energy function accurately, their elastic behavior can be 
represented approximately in this way, with C2 generally of 
the same order of magnitude as C{ [5]. If C2 is put equal to 
C,, then equation (2) predicts that ec, for the side edges of a 
sheared block, is about twice as large as for the front and rear 
edges. 

Measurements of the interfacial stresses set up at the front 
and rear edges of sliding blocks are somewhat difficult to 
carry out. We have therefore examined the sliding of a 
cylindrical rubber annulus, pressed against a frictional 
surface and rotated about its axis. The distribution of stresses 
in rubber annuli under compression and torsion are given 
elsewhere [6]. When the annulus is thin-walled and com
pressed only to a small degree, then the stresses conform 
closely to those developed at the side edges of a sheared block, 
as would be expected. The critical amount of compression ec 

at which frictional seizure occurs is predicted to be given by 
equation (2). 

In the following sections of the paper, experimental 
measurements of interfacial stresses for cylindrical rubber 
annuli are compared with the theoretical predictions. In the 
final section some observations are presented of the rotational 
behavior of an annulus subjected to a compressive defor
mation greater than that at which frictional seizure is ex
pected. 

2 Experimental Details 

Cylindrical rubber annuli were prepared as described in the 
Appendix. Each annulus was bonded on one face to a metal 
plate, used for securing it in the test fixture. Two identical 
annuli were pressed against opposite faces of a Plexiglas 
plate, as shown schematically in Fig. 1. The amount of 
compression was held constant and the compressive force N 
was monitored continuously during the experiment by means 
of a strain-gauge load cell and indicating recorder. While the 
annuli were compressed against the Plexiglas plate, it was 
slowly rotated between them at a rate of about 5 deg /min by 
means of the cable and pulley arrangement shown in Fig. 1. 
The cables employed to rotate it were also connected to a load 
cell, so that the rotational forces F' could be continuously 
monitored during the rotation. Equivalent frictional forces F 
acting at the mean radius f of the rubber annuli were 
calculated from the measured forces F' using the scaling 
factor rs/f, where rs denotes the radius of the Plexiglas plate, 
about 170 mm 

Typical dimensions of the rubber annuli were: external 
diameter 62.5 mm; internal diameter, 37.8 mm; height 11.9 
mm. Experiments were also carried out with annuli of about 
three times this height, 38.5 mm, with similar results. 

3 Experimental Results 

(a) Typical Measurements. Some representative results 
are shown in Fig. 2. The compressive force N pressing each 
annulus against the Plexiglas plate and the effective shear 
force F acting at each interface are plotted in Fig. 2 against the 
elapsed time. When rotation of the Plexiglas plate began, the 
imposed shear force gradually built up to a limiting value at 
which interfacial sliding started. Simultaneously, the com
pressive force decreased somewhat, probably as a result of the 
rubber annuli spreading outward on the Plexiglas surface and 
thus partially relieving the compressive stresses set up 
initially. When the rotation was halted temporarily, and the 
applied shear force removed, the compressive force N was 
found to decrease simultaneously. When rotation was 
resumed, the compressive force increased by an amount 
denoted AN in Fig. 2. Values of AN were determined in this 
way by applying the rotational sliding force F repeatedly. 
Similar experiments were carried out for a wide range of 
values of the initial compressive force. 

(b) Coefficient of Sliding Friction ft and Shear Modulus 
G. The effective force F at which sliding took place is 
represented by the plateau values in the lower part of Fig. 2. 
The corresponding compressive force N is represented by the 
plateau values in the upper part of the figure, where the 
equilibrium rest value of TV, denoted N0, is augmented by AN. 
The ratio F/ (N0 + AN) then affords a measure of the coef
ficient of sliding friction /x. When values of F and N0 + AN 
were determined in this way for a wide range of initial con
ditions, they were found to be approximately proportional to 
each other (Fig. 3) and yielded values for /x of 1.7 and 1.8 for 
an unfilled natural rubber material A and a carbon-black-
filled SBR material B, respectively. These values are 
representative of those reported for rubbery materials sliding 
over smooth rigid substrates [7]. 
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Fig. 4 Increase AN in the compressive force N versus mean sliding carbon-black-filled SBR annuli sliding against a Plexiglas plate 
force F for unfilled natural rubber annuli sliding against a Plexiglas 
p Table 1 Experimentally determined values of the shear 

modulus G, second-order normal stress At22, and calculated 
values of C2/Ct 

G A/ 2 2 / / l 2
2 

(MPa) (MPa)"1 

unfilled natural rubber annuli 
0.57 0.50 

carbon-black-filled SBR annuli 
3.2 0.13 

Bonded annuli of unfilled natural 
0.56 0.42 

rubber 

Ci/C, 

0*=1.7) 
0.39 

(M=1.8) 
0.68 

0.31 

Fig. 5 Increase At22 in the mean compressive stress f22 versus t^ 2
2 

for unfilled natural rubber annuli sliding against a Plexiglas plate 

When the applied shear force F was removed, the Plexiglas 
disk rotated back through a few degrees as the rubber annulus 
recovered from its twisted state. By comparing the sliding 
force F with the recoverable rotation, the shear modulus G of 
the rubber was determined. Values of 0.56 MPa and 3.2 MPa 
were obtained in this way for materials A and B, respectively. 
They are consistent with the measured indentation hardnesses 
of each compound, namely 45 and 72 Shore A degrees [8]. 

(c) Increase AN in the Compressive Force. As shown in 
Fig. 4, the increase AN in the compressive force required to 
maintain the rubber annuli at a fixed degree of compression 
when they were subjected to a sliding (shearing) force F was 
found to increase sharply as the original compression, and 
hence the force F required to cause sliding, was increased. The 
value of AN was found to be approximately proportional to 
F2, as the theory of large elastic deformations suggests. This 
is illustrated in Fig. 5, where the experimental results shown in 
Fig. 4 are replotted as the increase A/22 in the mean normal 
stress t22 versus the square of the mean applied shear stress, 
tl2

2 • They are seen to be described reasonably well by a direct 

proportionality in this representation. Similar results were 
obtained for annuli of the carbon-black-filled material B (Fig. 
6), although the values of AA and A/22 were considerably 
smaller in this case. 

Values of the slopes of the linear relations shown in Fig. 5 
and 6 are given in Table 1. Corresponding values of the ratio 
C2/Cl of the elastic coefficients were calculated from them by 
means of theory of large elastic deformations [1], specialized 
to the case of a material obeying the Mooney strain-energy 
function, for which 

&h2/tn2 = C2/2(C{+C2)
2. 

This relation applies to the side regions of a block subjected to 
a homogeneous shear deformation because it is based on the 
assumption that these surfaces are stress-free, i.e., / 3 3 =0. 
These conditions are assumed to hold for the sliding annuli 
used in the present experiments. 

Values of the ratio C2/Ct obtained in this way are given in 
the final column of Table 1. They are seen to be quite com
parable to those obtained by direct measurement of the 
nonlinear elastic behavior of rubbery materials [5], generally 
ranging between 0.2-1.5. Thus, the second-order normal 
stresses set up in sliding seem to arise from shear deformation 
of the sliding block and the values can be calculated on this 
basis. This conclusion was corroborated by studying the 
additional compressive forces AN generated by twisting two 
soft rubber annuli that were bonded to the central plate in Fig. 
1, and were therefore unable to slide. The results, given on the 
last line of Table 1, are in good agreement with measurements 
carried out on the same annuli during sliding, given on the 
first line of Table 1. Thus, although a thin sliding annulus is 
not strictly subjected to a homogeneous shear deformation, 
nevertheless the deformation is sufficiently similar to allow 
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Fig. 7 Photograph of the contact surface (in white) for a short rubber
annulus subjected to torsional sliding under a nominal compressive
stress of 0.65 MPa. Annulus dimensions: length, 3.05 mm; outer
diameter, 25.4 mmj and inner diameter, 15.9 mm.

the normal stresses generated on sliding to be evaluated on
this assumption.

(d) Frictional Seizure and Buckling. Critical amounts of
compression at which sliding becomes theoretically prohibited
can be calculated from equation (2) for the two rubbery
materials employed in the preceding experiments. The values
obtained for ec were 0.12 and 0.062 for the unfilled natural
rubber and the carbon-black-filled SBR material, respec
tively, corresponding to initial compressive forces No of 400
Nand 1200 N. As the initial compressive loads were raised
toward these levels in the sliding experiments, the measured
increase !:1N in the compressive force generated by frictional
shear forces was found to increase dramatically (Fig. 4),
becoming comparable in magnitude to the original value No.
Simultaneously, the frictional shear force increased
correspondingly. Eventually, at values of No quite close to the
theoretically predicted critical values, i.e., 400 and 1200 N,
continuous sliding of the rubber over the Plexiglas surface
ceased and the annulus underwent severe distortion, causing
its flat surface to be no longer in uniform contact with the
Plexiglas. Subsequently, sliding took place with the rubber
surface distorted in characteristic ways, depending on the
dimensions of the annulus.

An example of the distorted contact surface for a relatively
short rubber annulus is shown in Fig. 7. Parts of the cylin
drical outer surface of the annulus have been dragged into
contact with the Plexiglas plate at a number of points around
the circumference, forming a series of rather regular cusps.
These cusps completely transform the state of strain of the
rubber so that it is no longer subjected to a uniform shear
deformation. In consequence, the large second-order com
pressive stresses generated by frictional shearing are alleviated
and sliding proceeds with this distorted contact surface under
compressive loads greatly exceeding the predicted limiting
value.

Journal of Applied Mechanics

Fig.8 Photograph of the contact surface (in white) lor a relatively tall
rubber annulus subjected to torsional sliding under a nominal com·
pressive stress of 0.26 MPa. Annulus dimensions: length, 9.52 mm;
outer diameter, 25.4 mm; and inner diameter, 15.9 mm.

Similar effects were noted for tall annuli, having heights
comparable to, or greater than the width of the contact band.
In these cases the distortion that set in at the critical amount
of compression was found to affect the entire contact surface,
rather than its outer edge, and to take the form of a small
number of lobes generated by buckling of the walls of the
annulus. An example is shown in Fig. 8.

For both short and tall annuli, the same general behavior
was observed. When the amount of compression exceeded the
theoretically predicted value, normal sliding ceased, to be
replaced by sliding over a markedly distorted contact surface
with parts of the original flat contact surface lifted out of
contact and parts of the original cylindrical surface dragged
into contact. The reason for this distortion, whatever its
detailed form, is to overcome the frictional seizure that occurs
in a homogeneously sheared body as a consequence of second
order stresses.

4 Conclusions

The following conclusions were obtained.

1 Thin cylindrical rubber annuli, bonded at one end to a
flat metal plate and pressed at the other end against a
Plexiglas plate rotating about the cylinder axis, develop
additional contact pressures due to shear deformation of the
rubber under frictional stresses.

2 These additional pressures are approximately propor
tional to the square of the frictional stresses. They can be
calculated by means of the theory of large elastic defor
mation.

3 The additional pressures are smaller for rubber of higher
elastic modulus, as the theory suggests.

4 Frictional "seizure" is encountered at a critical amount
of compression, when the additional pressures generated by
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shear of the rubber become so large that normal sliding is 
impossible. The rubber annulus then buckles in characteristic 
ways, and slides with a distorted contact surface. 

5 The shape of the contact surface after buckling depends 
on the original dimensions of the annulus. For a relatively 
short annulus, portions of the cylindrical outer surface are 
dragged into contact, forming a series of cusps around the 
circumference. For a relatively tall annulus, the entire annulus 
buckles to form a two or three-lobed figure, again with 
portions of the original cylindrical surfaces dragged into the 
sliding interface. 

6 Similar effects are expected at the side edges of sliding 
rubber blocks, and at even smaller amounts of compression 
for the leading and trailing edges. 
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A P P E N D I X 

Rubber annuli were prepared by a molding process using 
the following mix formulations in parts by weight: 

A Natural rubber (SMR-5L), 100; zinc oxide, 5; stearic 
acid, 2; phenyl-/3-naphthylamine, 1; N-cyclohexyl-2-
benzothiazole sulphenamide, 0.6; sulphur, 2.5. Vulcanization 
was effected by heating for 50 min at 145 °C. 

B Styrene-butadiene copolymer (25:75, FRS-1502, 
Firestone Tire & Rubber Company), 100; zinc oxide, 5; stearic 
acid, 2; phenyl-/3-naphthylamine, 1; N-cyclohexyl-2-ben-
ziothiazole sulphenamide, 1; sulphur, 2; N220 carbon black 
(Vulcan 6, Cabot Corporation) 54. Vulcanization was ef
fected by heating for 60 min at 150° C. 
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The Interaction Between a System 
of Circular Punches on an Elastic 
Half Space 
Galin derived an expression for the pressure produced under a rigid circular punch 
by the application of a concentrated load at another point of the half space. This 
result is used to derive approximate relationships among the forces, moments, and 
indentations for a system of punches on an elastic half space. The results are 
compared with a number of earlier approximate solutions. 

Introduction 

Collins [1] discussed the interaction between two identical 
flat-ended rigid punches of circular cross section, each in
denting an isotropic elastic half space by an equal amount e. 
He set up the problem as an infinite set of Fredholm integral 
equations which he solved by an iteration technique; this is 
valid when the distance between the punches is large com
pared to the radii of the punches. Panasyuk and Andreikiv [2] 
derived virtually the same result by using the method derived 
by Galin [3] and which is described in the following. An
dreikiv and Dubetskii [4] considered the interaction between 
four punches by a method of successive approximation. A 
similar method is used by Buzko and Prosenko [5] for the 
interaction between two punches on a half space that has a 
Young's modulus E = EQz" (0 < v < 1). Marzitsin and 
Popov [6] applied the method of orthogonal polynomials to 
this problem. 

In all these papers an attempt is made to find the stress 
distributions under the punches. If it is then required to find 
the total forces applied by the punches, these stress 
distributions are integrated over the punch contact regions. In 
this paper we show that it is possible to find good ap
proximations to the total applied forces directly, without first 
finding the stress distributions. 

Theory 

Consider a single rigid flat-ended punch of radius a in 
frictionless contact with a transversely isotropic elastic half 
space z S; 0 with planes of isotropy parallel to z = 0. If the 
normal displacement under the punch is (Gladwell [7], p. 88) 

w(x,y) = w0+ayx-axy, (1) 

then the normal pressure exerted by the punch is 

1 w0+2ayx-2axy 
P(.x,y) = 

it-H (a2-x2-y2f 
(2) 
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where H is an elastic constant which reduces to H = (1 — 
v)/(2irfi) when the half space is an isotropic medium with 
shear modulus LI and Poisson's ratio v, (see [7], p. 581). 

Now suppose that a unit-concentrated normal load is 
applied to the surface of the half space at a point (x0,y0) 
outside the circle x2+y2 < a2. This load will produce an 
additional contact pressure under the punch. This additional 
pressure, which is such that, together with the concentrated 
load, it produces no additional normal displacement under 
the punch, was found by Galin [3]; it is 

{xl+yl-a2y 
Pe(x,y) = 

^{a2-x2-y2r'Ux-x0)
2+{y-y0)

2) 
(3) 

Equations (2) and (3) give the only fundamental results used 
in this paper. Equation (3) was derived by Galin for an 
isotropic elastic half space, but clearly holds when the 
medium is transversely isotropic. 

Figure 1 shows punches j and k of a set of TV punches. 
Punch k occupies the circle Sk of radius ak\ its center (xk,yk) 
has polar coordinates {bjk,4>jk) relative to punchy. Equations 
(2) and (3) show that if the displacement under punchy is 

w(_x,y) = Wj + aJy(x-Xj)-ajX(y-yj), (x,y)eSj, 

then the normal pressure under punchy is 

1 

(4) 

{x-XjY-iy-yjY)'' 

' Wj + 2ajy {x -Xj)- 2ayA. jy-yj) 

H 

Pk (*o Jo ){(x0-Xj)2+(y0- yj )2 - a) ] 
(x-x0)

2+(y-yQ)2 \dxdy, 

(5) 

where the prime on the summation indicates that k ?± j . 
Now transform to polar coordinates as shown in Fig. 1; 

then 

x-Xj = rcos<f>, y—yj = /"sin$, 

Ar0-^=/-0cos(/)o, yo-yj = r0siW 
and equation (5) becomes 

(6) 

(7) 
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1 r W: + 2aJy rcos4> - 2ajx rsin<t> 
pw>= im^f- L n 

N . . 
Pk(r0,<t>o)(/p " aj)'/; /-p^od<j>0 

r2 + / - 2
)-2/r ocos(0-0 o) ]• (8) 

We now integrate this expression over the circle S- and use the 
integrals 

l "2"- fi?(/> 27T S ZTT 

o r2 + 

r 
rjj - 2/r0 cosW>-</>,,) d-r2' 

rdr 1 

r0 > r, (9) 

( r 2 -^? - , - 2 )* iti-ajV 

to obtain 

(-5-)' '0>^ 
(10) 

(11) 

This equation is exact, within the assumption of classical 
elasticity theory. If we now assume that dj/bjk is small we 
may take 

(£)-"-(2 > ' 0 ' ^ujk 

and obtain 

2a, w, 2 T-\ . / a, \ 
^/ = - ^ - ^ L 'Pksin-1 ( ~L 

The punchy applies a moment with components 

Mjx = ~~\\s <y~y^Pj (X'y) dXdy 

1 (• 27T j - llj 

= - I j r2Pj(r,4>)s\n<j>drd4>, 

Mjy =\j\is (x-xj)Pj(x,y) dxdy 

•\2J\lJ^> 4>)cos<t>drd4>, 

(12) 

(13) 

(14) 

(15) 

so that 

Mj=Mjx + iMjy = i[ [ J r2el,pPj(r,(t>)drd<l). (16) 

Thus, if we multiply equation (8) by re'* and integrate over Sj 
we find 

Fig. 1 The geometry of the punch configuration 

Fig. 2 Collins' two-punch problem 

Again equation (19) is exact within classical elasticity 
theory. If dj/by is small we may take 

e'*o ( r o S in " ' ( ^L ) - °J- (r\ - a]) v>) = e'*A 

lbjksm-l(£-)-£-(b}k-aj)»), 
\ Djk / Ojk 

(20) 

so that 

(21) 

(22) 

My-
4a] aj 2/ y i , 

3wH ~ "7 r1, 

\LAr°™-iJk)-irrt-'*"} 
•Pk(r0,<t>o)ei'!'0rodr0d<l>o, 

where a, = ajx + iaiy. In deriving this we used the result 

' 2 , r e'V(/> 27re'0o r 

(17) 

, 4a? cot: . T-i e^Jk -) 

This formula may be rewritten 

4O}OJ__±£ ,My 
1 3irH 3ir k% \bjkJ

 J 

where Mjk = / bjk e'*i* Pk is the moment of Pk about the 
center of they'th punch. A study of the errors made by using 
the replacements (12) and (20) shows that they are of the same 
order as that incurred by proceeding to (21). Equat ions (13) 
and (22) are the main results of this paper. 

Applications 

For Collins' problem of two identical punches of radius a, 
distance b, as shown in Fig. 2 apart along the x-axis, equation 
(13) gives 

2aw0 2 . 

o r2 + 

and 

P Jo 

rl-2rr0cos((l>-<t>0) r\-r2 r0 

r3dr 

r0>r, (18) 
•wH w ( ! ) ' • 

(r2
0-r

2)(a}~r2)'A (I*0-„J 

r° , • -U aJ \ 

so that if 

then 

2aw0 a 

r0 

(r2o-aj)'A}, (19) 

when r0 > aj. 
1 H sin ' e 

(23) 

(24) 

(25) 
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When expanded in powers of e this gives 

= 1 
2e 4e2 

7T 7T2 
r ( l + ^ ) + 0(e4). (26) 

This differs from Collins' result 

= 1-
2e 4e2 

IT •7T2 ^ ( 1 + l 2 - ) + 0 ( e ) ' (2?) 

only in the fourth term. In their approximate solution 
Panasyuk and Andreikiv [2] obtained a stress distribution 

p{r,4>) = 
Hwn 

T r 2 ^ 2 - ^ ) 1 [ - * ( ' • 
2rcos<t> 

Tt2 

2>i2cos14> 

/ 2rcos4>\ 8e3 / 

h 

^ s i n 2 ^ ' 

12 
)+0(e4)] (28) 

and, on integration, this agrees with Collins' result (27). 
For the configuration of Fig. 2, the angles are 4>l2 = 0, </>2i 

= IT. Therefore, if the punches are not allowed to tilt, then the 
moment applied by punch 1 is 

4o3 iP 4/ , 
M, =Mlx + iMly = - —-T- = - —" ae p (29> 3ir63 

3TT 

so that 

4tfe2 ( 2e ., ") 
ML v = 0, M1;, = _ _ _ i _ _ + 0(e2) P 0 . 

37T <̂  IT J 
(30) 

This agrees with the result found by integrating (28). If, on the 
other hand, no moments are applied, then the rotation of 
punch 1 is 

HiP Hi 
~b~> 

[ l - ^ + 0 ( e 2 ) ] p 0 (31) 

so that 

a„=0, alv = - J ^ [ l - ~ + 0 ( e 2 ) ] . (32) 

If the punches in Fig. 2 are subjected to different forces P\, 
P2, then equation (13) yields 

•KH 

~2a \Pi + (sin- eVi}. (33) 

This may be contrasted with the approximate result obtained 
by Marzitsin and Popov [5] (equation (1.16)), namely 

•KH (" / 

T e + y e + . . . ) P 2 ] . ( 3 4 ) 

This not only contradicts (33), but is also clearly unrealistic; 
even for e = 1/4, the multiplier of P2 will be greater than 
unity, whereas the multiplier in equation (33) is (correctly) 
always less than unity. 

Figure 3 shows a configuration of (N+ 1) punches, one 
central punch of radius a0, normal force P0, and 
displacement w0, and N (= 8) identical peripheral punches of 
radii a, with forces P, and displacement w, situated 
equidistantly on a circle of radius b. Equation (13) applied to 
the central punch yields 

•KH IS 0 
(35) 

so that 

W 0 : 
•KH 

2a0 

I 2NP . 
[P0 + sin" 

b ) ' 
(36) 

On the other hand, equation (13) applied to a peripheral 
punch yields 

Fig. 3 N equal punches circling a central punch 

P = 
2a w 

rff P0sin~ 

where 

/v=i 

5= £sin- ' ( . 
1/ — 1 ^ 

a \ 2 

~b / "7 

) • 

SP, (37) 

(38) 

2bsm(~) 

In the particular case of four punches at the corners of a 
square of side h and no central punch, we have N = 4, b = 
4lh/2, so that 

•KHP ( 2 . , / e \ 4 . \ a 
w= 1+ - s i n " 1 (-p= + — s i n - ' e l , e= — . (39) 

2a V 7T VV2/ 7T / h 

This does no/ agree with the expression 

7T//P 

2a 
• (1 - 2 . 5 8 6 6 - 1.0976e3 + 12.22e4) (40) 

obtained by Andreikiv and Dubetskii [4], but their formula 
contradicts common sense —w decreases as e increases! The 
expression in equation (39), on the other hand, increases with 
e. 

The peripheral punches of Fig. 3 will all tilt inward, and, 
according to equation (22), the tilt of punch 1 will be 

H HP x^ 
a>-*i<wp°+Sr£ 

A, <A 2 

7T (A:-1)7T 

TV 

TV J 

(41) 

[2sin 

In particular, when TV is even (= 2M) the tilt a[x of punch 1 is 
zero and 

H f 
( w )]]••«> 

A final application of equations (34), is the determination 
of the ratio P/P0 which yields equal displacements w=w0. 
The required ratio is 

a 2 . / a \ 
— sin I — 1 

a0 7r V 6 / 
(43) 

1+ — S-
7T a0/ ir \ b / 

Figure 4 shows values of this ratio for three values of e0 = 
a0/a. Results are displayed only for e = a/b < sin(7r/TV)/2; 
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Fig. 4 The ratio PIP0 which yields w = w0 

this inequality must be satisfied if the peripheral punches are 
to be sufficiently separated for the approximations used to be 
valid. 

Conclusions 
Formulas (13) and (22) yield approximate relations between 

forces, moments, displacements, and rotations for a set of 
punches on an elastic half space. These relations agree well 
with previous analyses derived, for instance, by Collins [1] 
and Panasyuk and Andreikiv [2]. On the other hand, they 
provide credible replacements for other formulas (equations 
(34) and (40)) which do not exhibit the behavior expected of 
them. 

The results presented in Fig. 4, though maybe not of im
mediate practical interest, illustrate how the basic formulas 
may be used. 
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Rough Contact Between Elastioally 
and Geometrically Identical Curved 
Bodies 
Surface and subsurface stresses and displacements are obtained when two 
geometrically and elastically identical rough bodies are pressed together by normal 
and tangential loads. The theories of Cattaneo and Mindlin, who introduce zones of 
slip and stick within an elliptical contact area, are used. Von Mises yield criterion 
and maximum principle tensile stresses are used as failure criteria to assess potential 
failure due to shear or brittle fracture. 

Introduction 
This paper considers the state of stress when two identical 

rough bodies are pressed together, first by normal and then by 
tangential loads (see Fig. 1(a). The dimensions of the contact 
are considered to be sufficiently small compared with those of 
the body that the assumptions of Hertz [1] are considered 
valid. 

The problem of determining the stress field throughout a 
body, normally loaded by Hertzian stresses and tangentially 
loaded by stresses proportional to the normal Hertzian 
stresses, was solved by Hamilton and Goodman [2] for a 
circular region of contact. Using their solution for the total 
field, Hamilton and Goodman calculated the second 
deviatoric stress invariant, J2, in an attempt to determine the 
location and amount of plastic yielding present in the body; 
they also determined the location and magnitude of important 
tensile stresses acting near the region of contact as an aid in 
predicting the onset of surface cracking. 

Chen [3] and Dahan and Zarka [4] have solved for the stress 
field in a perfectly smooth, transversely isotropic half space in 
contact with an elastic spherical indenter under normal 
loading. In both papers results are plotted for several trans
versely isotropic materials to show the effect of the anisotropy 
on the indentation of an elastic half space. Equations were 
obtained by Keer and Mowry [5] for the stress field created by 
a circular sliding contact on transversely isotropic rough 
spheres. 

This paper extends the work of Hamilton and Goodman to 
the general case of an elliptical contact, first studied by Hertz 
[1]. In addition, zones of slip and stick will be included, where 
both the stick zone displacements and the tangential stresses 
are oriented along the major or minor axis of the ellipse of 
contact. The boundary conditions on z = 0 for this problem 
are: 

NR 

ID 
Fig. 1 Rough contact between two identical curved bodies. Figure 1(a) 
shows the loading and overall geometry; Fig. 1(b) depicts the geometry 
of the contact region. 

-P0N(x,y;a,e) = -P0 
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where p — cos S; q = sin <5; 5 is the directional angle of 
tangential force application, measured clockwise from the 
positive x-axis; / is the coefficient of friction acting on the 
contact region; e2 = 1 - (b/a)2, where a and b are the lengths 
of the major and minor axes of the contact ellipse E° (the 
major axis is oriented along the x-axis); (u,v,w) are Cartesian 
displacements; and U is the constant stick displacement, 
acting over the entire zone of stick E* (see Fig. 1(b)). As 
discovered by Cattaneo [6] and Mindlin [7], E* is an ellipse of 
major axis a* interior to and concentric with E° also having 
eccentricity e; however, it was found that special conditions 
must be placed on 5 to make the proposed boundary con
ditions consistent. 

Method of Analysis 
In [8], Lure obtains the solution for the frictionless, 

elliptical Hertzian contact problem in terms of elliptical 
coordinates (p,i,v) and the displacement potentials (equation 
5.2.2, p. 256): 

«<• = - -— \z~ + ( ! • 

v<= • 

1 

4-irn 

1 

3d) 

'Tx •27,) 

r dw 
iirfi L by 

(1-27,) 

dx -

(4) 

1-7, 1 do) 
2TT Î AiTfi dz 

Here, T, is Poisson's ratio, /x is the shear modulus, and coi 
dw/dz, where 

dt 
u(x,y,z) =P0ira(l-e 

[(t2-\)(t2-e2)]'> 

l a2t2 a' 
r 

(t2-e2) a2(t2-\). 
(5) 

and (p,£,v) are determined as roots of 
v2 „2 

a2R2 r_ 
a2(R2 

+ -•e2) a2(R2-\) 
1=0 

and where 0 < < e2 < f- < 1 < p2 < oo; e2 1 
(b/a)2; a and b are the major and minor axes of the elliptical 
contact region E°; and P0 is the maximum Hertzian contact 
stress. 

As in [8], for normal contact, the elliptical contact 
parameters P0, a, and e can be related to the bulk contact 
parameters NR, Rx, andR y through the following: 

Ry 

Rr 

. - [ 

Pn = 

(l-e2)[K(e)-E(e)} 

E(e)-(l-e2)K(e) 

3 NRRxD(e)(\-v) 

7T/Z 

37V* 3NR 

lirab 2wa2(l-e2)'A 

where Rx and Ry are the radii of curvature of the contacting 
bodies along the x and y directions, respectively; K(e) and 
E(e) are the complete elliptic integrals of the first and second 
kind; NR is the resultant normal stress; and D(e) = [K(e) — 
E(e)]/e2. 

The displacements and stresses are: 

Normal Load—z-Direction. 

, P0(l-e
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The functions F(0,e);/,-,y = 1,12; ^i(p,x,y,z)\ 4>\(P)\^I(P)\ 
Z(t,v;e); 9(p,f>); and A(p) are defined in the Appendix. 

The solution to the problem in which the contact shearing 
stresses are proportional to the normal Hertzian contact 
stresses can be found using the potential solution of 
Boussinesq and Cerruti found in Love [9]: 

_ j _ d*F X d /dF 3H\ 

27r/n dz2 47r/x(A + /x) dx V dx dy / 

Z d2 /3F dH 
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\3~x 

w = 

4-KJX dydz V dx dy / 

1 _9_ / dF dH_\ z d2 / dF dH\ 

4TT(X + M) a i \~dx +"dy)~ 4^i 3?" V dx +l)y)' ( 7 ) 

F=pf\-z\ oi(x,y,s)ds+\ so (x,y,s)ds\ 

H=qA—z\ w(x,y,s)ds+\ sw(x,y,s)ds\ (8) 

where (u,v,w) are the Cartesian displacements; / is the 
coefficient of friction between contact indenter and half 
space; F and H are the components of the tangential traction 
T, in the x and y directions, respectively; and X and /J, are 
Lame's constants. 

The Cartesian displacements and stresses corresponding to 
these tangential traction components in the x and y directions, 
respectively, are: 
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T
x
xy=.P0{\-e2)Vl — -t2(p)+2r]I2 andfboth tendtoone . 
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r 2 -, x2 formulas can be extended to the case where an elliptical region 

+ (l~2r)) — 1 4 H j - 77 j - £* of stick, having eccentricity, e, and being interior and 
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x — —— j involving slip and stick, Cattaneo determined the resulting 
p\P

2-e2)Q(p,$,v)) 
components X and Y of tangential traction acting over the 
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Fig. 2(b) 

Fig. 2 Contours of (J2)
V' IPQ beneath the contact zone for / = a* = 0, 

and for b/a = 0.4. Figure 2(a) is directed along y = 0 while Fig. 2(b) is 
directed along x = 0. 

For consistency, qUx/Q(e,7j) = pUy/3C(e,rj); hence, the only 
cases for which the resultant surface displacements and the 
resultant tangential traction are codirectional are when e = 0, 
or when 5 is either 0 deg or 90 deg (since Ux = pU, Uy = qU). 

For the cases of slip-stick in which <5 is either 0 deg or 90 
deg, equation (11a) and (11Z?) imply that the solution due to 
the resultant tractions of a normally loaded Hertzian contact 
with regions of slip and stick can be obtained by superposing 
three solutions: the solution for the normal Hertzian contact 
over the region E°, equation (6); the solution for shearing 
tractions arising from Coulomb friction and proportional to 
the normal Hertzian load, taken over the region E°, equation 
(9) and (10); and the negative of the solution for shearing 
tractions, proportional to a fictitious normal Hertzian load 
having maximum contact stress P0(pXQ + qY0), and taken 
over the region E*. The resultant stress tensor and 
displacement vector can be written as 

rR = T° + (pix + qr°)- (pr* + qTy*) 

U* = U° + (pVx + qV°y)- (pU; + qV;) 

where the T and U notations refer to stress tensor and 
displacement vector; the subscripts R, x, y, and z refer to 
solutions for the resultant, the x-directed, the/-directed, and 
the z-directed tractions; and the superscripts 0 and * refer to 
the regions E° and E*. 

Results and Discussion 
As in [2], questions of mechanical failure will be ap

proached by calculating the von Mises yield parameter 

Fig. 3(b) 

Fig. 3 Contours of (J2>h IPQ on y = 0 beneath the contact zone 
(having a* = 0 and b/a = 0.4) forx-directed tangential tractions. In Fig. 
3(a), f = 0.25; in Fig. 3(b), f = 0.5. 

J2 = Txy + Txz + Tyz+-[(ox-oy)
2+(ox-az)

2+(<jy-az)
2], 

useful in predicting plastic flow and in determining regions of 
residual stress and cracking; and by calculating the largest 
principal tensile stress op, useful in predicting cracking of 
brittle materials. The length of the major axis a was chosen to 
be the unit distance, while the maximum Hertzian stress P0 

was chosen to be the unit stress. For the following, Poisson's 
ratio TJ = 0.3; when calculating surface displacements Ux or 
Uy within the region of stick E*, the shear modulus = 11.5 X 
106 psiandPo = 200,000 psi. 

In Figs. 2-4, lines of constant (J2)
Y' /P0 are plotted beneath 

the contact region along the planes x = 0 and y = 0 of the 
stressed half space. For these figures, b/a = 0.4 and a*/a = 
0. In Figs. 2(a) and 2(b) whe re / = 0, (J2)'

A/P<, is exhibited 
along the planes y = 0 and x = 0, respectively. Comparison 
between Figs. 2(a) and 2(b) reveals an expansion of the 
contours directed parallel to the major axis (x-axis) and a 
contraction of the contours directed parallel to the minor axis 
O-axis). This expansion and contraction is especially 
noticeable if compared to the / = 0 contour for circular 
contact given in [2]. Figure 2 also displays a subsurface 
maximum of J2 located beneath the contact center, similar to 
[2]. In fact, the depth of the maximum J2 value in Fig. 2 can 
be shown approximately equal to that in [2] if the square root 
of the contact area is used as the unit of length for both cases 
(the circular contact and the elliptical contact would then 
possess equivalent resultant traction and equivalent contact 
area). 

Figures 3(a), (b), 4(a), and (b) contain (J2)
Vl/Po contour 

plots oriented along the planes y = 0 and x = 0, respectively, 
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Max. ^ \ 

/^25 

\ ^ 

^ '.2 /.I5 
•' 

^^ 

D5 

z/a 

Fig. 4(a) 

Fig. 4(b) 

Fig. 4 Contours of (J2) / i" ,o on x = 0 beneath the contact zone 
(having a* = 0 and b/a = 0.4) for y-directed tangential tractions. In Fig. 
4(a), f = 0.25; in Fig. 4(b), f = 0.5. 

corresponding to nonzero tangential tractions directed along 
the major and minor axes of the contact ellipse. For the " a " 
figures, / = 0.25, while for the "b" f igures/ = 0.5. As in 
Figs. 2(a) and 2(6), an elongation along the major axis and a 
contraction along the minor axis can be observed if Figs. 3 
and 4 are compared to their counterparts in [2]. Comparison 
between Figs. 2-4 shows that as / increases, the maximum 
value of J2 increases and its location moves closer toward the 
half-space surface; when / = 0.5, the maximum / 2 value lies 
on the half-space surface. This phenomenon was also ob
served in [2] for circular contacts. 

Figures 5(a), (b), 6(a), and (b) contain lines of constant 
maximum principal tensile stress ap/P0 existing on z = 0 
inside and near the contact zone.1 Figures 5(a) and (b) 
correspond to x-directed tangential tractions having/ = 0.25 
and 0.5, respectively; while Figs. 6(a) and (b) correspond toy-
directed tangential tractions having / = 0.25 and 0.5, 
respectively.2 Since Figs. 5(a) and (b) were found to be 
symmetric about the x-axis and Figs. 6(a) and (b) symmetric 
about the _y-axis, only half of each figure is shown. The 
arrows in Figs. 5 and 6 shows the orientation of the stress ap, 
the dotted lines bound regions of compression from tension, 
and the elliptical contours represent boundaries of the contact 
ellipse. 

Inspection of Figs. 5 and 6 shows that the maximum value 
of op/P0 is located at x/a = - 1 , y = 0 for x-directed 
tangential tractions, and y/a = - 0 . 4 , x = 0 for ^-directed 

Subsurface values of a„ /PQ were found to be small in comparison to values 
at z 

2 
;0. 

op /PQ plots for / : 
0 yielded elliptical contours concentric to and larger 

z = 0,x than the contact ellipse Er. The maximum value of ap is located at.y 
= ±a. 

/^ s^^ 

/ (IK ' 
f Jill 1 

^r^ ~" 

• i 

r r r 

y / a 

- -0-5 

~ ~ ~ ~ ^ - - . 

1 \ 
1.0 
x/a 

Fig. 5(a) 

Fig. 5 Contours of the largest principal tensile stress aplP§ inside 
and near the contact zone (having a* = 0 and b/a = 0.4) for x-dlrected 
tangential tractions. In Fig. 5(a), / = 0.25; in Fig. 5(b), f = 0.5. Both Figs. 
5(a) and 5(b) are symmetric about the x-axis. 

/ -0.5 

x/a 

\\\ 

\Vft\ 
\\\\ 
\V\ 
\ 
1 
1 
1 
1 

\ 2 

0.5 
y/a 

-0.5 

Fig. 6(a) 

Fig. 6(b) 

Fig. 6 Contours of the largest principal tensile stress ap/P0 inside 
and near the contact zone (having a* = 0 and b/a = 0.4) for y-directed 
tangential tractions. In Fig. 6(a), 1 = 0.25; in Fig. 6(b), f = 0.5. Both Figs. 
6(a) and 6(b) are symmetric about the y-axis. 

tangential tractions. Furthermore, this maximum ap is always 
oriented along a line parallel to the direction of the tangential 
traction; i.e., the largest ap will coincide with the largest ax 

for Fig. 5 and the largest oy for Fig. 6. Finally, this maximum 
increases in magnitude with increasing frictional coefficient/. 
These findings are consistent with [2] for circular contact. 
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U,)''* 
Po 

0 

f =0.5 

0 , 0.25 

Asymptote 

0.563 (f-0.5) 

0.352 {f "0.25) 
0.322 ( ( -0 ) 

1 1 1 

b/a 
Fig. 7 Maximum (J^)'''IP$ v e r s u s b/a for a* 
and 0.5. The asymptotes and the values at b/a 

- 0 and for / = 0, 0.25, 
1 were taken from [2]. 

Po 

f = 0.5 

0-25 

0 

i ' : 
b/a 

Fig. 8 Maximum ap/P0 versus b/a for a* = 0 and for r = 0, 0.25, and 

0.5. Note that these maximum values coincide with ax\ x=~a • 
y=z=0 

and that values at b/a = 1 were taken from [2]. 

discussions with Professor H. S. Cheng, coprincipal in
vestigator on this project during the course of this research. 
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A P P E N D I X 

Figures 7 and 8 are plots of b/a versus the maximum value 
oi{J2)'

A/P0 or ap/P0, respectively, f o r / = 0, 0.25, and 0.5. 
For these figures, it is assumed that the tangential traction (if 
any) is oriented along the major axis (x-axis). Values of b/a > 
1, corresponding to the minor axis being longer than the 
major axis, were obtained by using cases in which the 
tangential tractions were ^-directed and b/a < 1; the major 
axis then became b and the minor axis a. The asymptotes and 
the points at b/a = 1 were taken from [2]. Finally, note 

that in Fig. 8, ap = ax x=_a . 
y = z = 0 

Figures 7 and 8 show for b/a > 1 essentially constant 
values of (J2)'

A/P0 and ap/P0, given / . For b/a < 1, 
(J2)'

A/Po remains constant, while ap/PQ decreases, especially 
for larger values of/. 

Cases corresponding to Figs. 2-8 in which a*la = 0.25 
were also calculated. In general, values of (J2)

v'/Po and 
ap/P0 were reduced by less than 5 percent, the largest 
reductions occurring inside or near the zone of stick. Also, the 
constant surface displacements Ux/a or Uy/a within the zone 
of stick E* were found to be of order 10 ~3. 

Conclusions 
The following important conclusions are listed: 

1 Damage parameters ap and J2
 Vl are essentially constant 

for most values of b/a and increase with increasing / . Hence 
values of ap and J2

 Vl derived from line contact may be used in 
place of or as bounds to values of ap and J2

 Vl derived from 
elliptical contact, given the same/. 

2 The qualitative findings of [2] for circular contact may be 
valid for elliptical contact, excepting the relative locus of J2

 Vl 

maximums for larger/. 
3 Tangential tractions oriented along the minor axis of the 

elliptical contact (for b/a < 1) produce a larger maximal 
tensile stress ap than tangential tractions oriented along the 
major axis; minor axis loading may be more dangerous than 
major axis loading. 

4 A small zone of stick acts weakly as a stress reducer. 
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p2 < oo throughout the Appendix. Also, note that 
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The <111> Elliptic Inclusion in 
an Anisotropic Solid of Cubic 
Symmetry 
This paper deals with a generalized plane problem in which a uniform stress-free 
strain transformation takes place in the region of an elliptic cyclinder {the in
clusion) oriented in the {111) direction in an anisotropic solid of cubic symmetry. 
Closed-form solutions for the elastic fields and the strain energies are presented. 
The perturbation of an otherwise uniform stress field due to a (111) elliptic 
inhomogeneity is also treated including two extreme cases, elliptic cavities and rigid 
inhomogeneities. 

1 Introduction 
A simple method of treating the generalized plane problems 

of elastic inclusions in an anisotropic solid was recently 
presented by the authors [1]. The method is based on the 
anisotropic elasticity theory for line defects [2] and the point 
force method for inclusions [3, 4]. In general, it is difficult to 
obtain closed-form solutions for the elastic fields; the dif
ficulty hinges on the solution of a sextic equation, which, 
except for the presence of symmetry elements, cannot be 
obtained analytically. 

For the elastic field of an elliptic inclusion in an infinite 
medium with a (or a set of) two-fold rotation axis, closed-
form solutions have been obtained and reported [1, 5, 6]. 
Typical examples in this class are the <100> and <110> elliptic 
inclusions in a cubic crystal. By a <100> (or < 110>) inclusion, 
we mean that the axis of the cylinder is parallel to the <100> 
(or < 110>) direction of a cubic lattice. 

Another equally important case in the cubic system is the 
< 111 > inclusion of which the axis is parallel to a three-fold 
rotation axis. Since the solution for a < 111 > line force is 
known [7], it is possible to treat the < 111 > inclusion using the 
line force results. The detailed formulation will be presented 
in Section 2. It is worth noting that for this class of plane 
problems the elastic field cannot be separated into plane strain 
and antiplane strain parts. The three displacement com
ponents (and six stress components) have to be solved 
simultaneously. This class of elastic systems has not 
previously been analyzed. 

In Section 3 we shall summarize the results for the trans
formation problem in which the inclusion tends to undergo a 
stress-free strain transformation. Because the resulting stress 
field is uniform inside the inclusion, the analysis can be ex
tended to the inhomogeneity problem in which a uniform 
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stress field in the matrix is perturbed by the presence of a 
second phase. For the purpose of illustration, two extreme 
cases concerning elliptic cavities and rigid inhomogeneities 
will be treated in detail. These are presented in Sections 4 and 
5. 

2 General Formulation 
Consider an infinite anisotropic medium of cubic symmetry 

which contains an elliptic inclusion described by x^/a2 + 
x2

2/b2 = 1, where x, and x2 are coordinates of a right-
handed cartesian coordinate system x-, (i = 1, 2, 3). To 
specify a < 111 > elliptic inclusion, the xu x2, and x, axes are 
oriented in [112], [110], and [111] directions, respectively. 
The elastic constants associated with this coordinate system 
(the (111) elastic system) are given by 

C, C, C,3 
0 cv 0 

(-MN — 

c„ C,3 

C33 

0 

0 

C44 

- C 1 5 

0 

0 

C44 

0 

0 

- C 1 5 

0 

where the CMN (MN = 1 , 2 , . . . 
standard elastic constants C°n, C°[2 

medium by 

1 
C J I — C] j H C, 

c„=a? + -H 

C„=C?, + - 7 / 

(1) 

Q56 

6) are related to the 
and C°44 of the cubic 

C I , - , * 

1 
C44 — C44 + H 

Qi6 = W4 + 7 H (2) 

C, 
<1 

H H — CVi — CY2 — 2 C4. 1 — "-12 ^ ^ 4 4 
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In this case, the stress and strain tensors are related by 

Pu = C U eu + Cl2 e22 + 2 C 1 5 e13 

p 2 2 = C 1 2 e„ + C „ e22 - 2 C 1 5 e13 

P 33=C ,
1 3 ( e H + e 2 2 ) 

p 2 3 = 2 C 4 4 e 2 3 - 2 C 1 5 e13 (3) 

P13 = c i 5 (eu - e 2 2 ) + 2 C 4 4 e,3 

Pi2 = - 2 C , 5 e13 + 2 C 6 6 e , 2 

For generalized plane strain problems, and in particular for 
the < 111 > elastic system, it is convenient to use the reduced 
elastic compliances defined by the relation 

The functions du)m are defined as 

dm = 

d(D2 -

dU)3 = 

1 

6 i r i ( l + / ^ / ) ) L l - 3 (i\n 

1 

\J*B>i-+(h.-5)iR] 

6iri(l+fi2
(/) ) 

Sis M(/) (M(/) ~~3) 

[„ ( / )(l + |l)* + 2] (9) 

•J MW — $MM 

-S-33 

where sMN are the elastic compliances. The stress and strain 
tensors of the < 111 > system are then related by 

en = S | i P u + S12 p2 2 + S15 p13 

en =Sn Pu + S H p2 2 - 5 I 5 p13 

1 
e23 = r&w p2 3 — S15 p1 2 (5) 

1 
ei3 = ^ t^isCPi p2 2) + S 4 4 p 1 3 ] 

Sl5 P23 + (S11 - S i 2 ) P l 2 

with e33 = 0. Expressions for SMN in (5) in terms of the 
s tandard elastic constants (C?, , CPn, and C44) are given in 
reference [8]. 

To analyze the < 111 > inclusion problem by the line force 
method, it is necessary to solve the elastic fields of a < 111 > 
line force. This has been done in reference [7], The 
displacement field of a line force F,„ (m = 1,2,3), acting at a 
point .y along the x} axis, can be written in a modified form as 

H, = ft X J [ ( 5 n M2(/> + S i 2 ) - / 3 S , 5 n{n]da)mFm lnza) 

"2 = « f Z)[(S,2 M(i) +S , , / / « ( „ ) + 0 S 1 3 ] d ( / ) m F m to*,,, ] (6) 

"3 = ft I ] [5i5 (/*</) - 1) - /3 S44 jt( / ) ]d ( , ) m F,„ /« z ( / ) 

where (R stands for the real part of a complex function. The 
complex coefficients, /*(/) (/ = 1,2,3), are the three roots with 
positive imaginary parts of the sextic equation (see equation 
(23) in reference [7]) with 

M d ) = ' 
. (R + \)m + ( / ? - ! ) ' • 

M(2) : 

Rl) = 

( t f + l ) 1 / 3 

^(i) - T / 3 

1+/. , ! , V3 

l - u m V 3 

- ( * - ! ) ' • 

(7) 

^ ( D ^ 

and 

~k S\i S4, 
(8) 

67rr ( l+ /xf ; ) )S , j 

and (3 is given by 

S I I ( 1 + ^ / ) ) 2
 = Si5 /x(/) (ix\n - 3 ) 

•S15 M(/> (^/> - 3 ) S4 4(l +n2
m ) 

The complex functions z ( / ) are defined by 

zU) = (xl +nU)x2)-(yl +iiwy2) 

1 

(10) 

(4) = - [ ( x + i - ; > ( / ) x + ; > ( / ) i ) - ( 3 ' + j - / > ( , ) > ' + /M(/)J:')] ( H ) 

where the complex variables x = x, + / x 2 (with its conjugate 
x = *i - / * 2 ) and > = yt + / > 2 (with its conjugate j = >>, 

- ' > 2 ) -
In equations (6) and in the subsequent equations, sum

mat ion convention for tensor components is adopted, i.e., 
summation is understood to be carried out over repeated 
subscripts. However, subscripts not used for tensor 
characteristics are enclosed in parentheses. In this case, 
summation will be written explicitly as shown in (6). 

From equations (3) and (6), the stress components produced 
by a < 111) line force at a point y can be given by 

p i i = « f £ 

=4i 
2 A 17 l 

P{l)aV)mPm ~ 
/=1 *(/> 

P22 =W[2_jdmmF, U)mrm 
1=1 ZU) 

} 

P33 s?, - 2 5/3 (P11 +P22) 

1 

(12) 

idU)mFm { 
W=l ZU) J 

P23=«f£/3< 

Pi3 = -<KJ E/?/*</) dm,„Fm — 
S = i zw J 

Pi2 = " f t YtW) dWm Fm — 
N = l ^(/) J 

where &MN (MN = 1,2,. . . 6) are the s tandard elastic 
compliances and 

8 — Su —Sfi2 — Z^44 (13) 

2.1 The Transformation Problem. It is appropriate at this 
stage to review Eshelby's approach to a stress-free strain 
t ransformation taking place in an inclusion. His concept 
comprises a set of hypothetical operat ions. The inclusion is 
thought to be cut out of the matr ix and allowed to achieve a 
uniform stress-free strain Efj. A traction —T, = F*y «/ is 
applied to the surface of the inclusion, S (tij are the direction 
cosines of the outward normal at a surface element dS). This 
produces a strain — Efj in the inclusion and restores it to its 
original form. The inclusion is then put back into the hole of 
the matrix and rejoined with the material across the cut. At 
this t ime, the matrix is unstressed and there is a uniform stress 
— Pfj in the inclusion. The applied surface traction —T-t 

remains in the medium as a layer of body force spread over 
the interface S, given by 
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dp/ = -F% rij dS (14) 

Finally this layer of body force is removed by applying equal 
but opposite line forces on S. Now both the matrix and the 
inclusion are in an elastic state which can be determined by the 
strain transformation that has taken place in the inclusion and 
by the elastic fields produced by the line forces on S. 

Thus, in considering a transformation problem, it is 
essential to determine the total contribution of the line force 
F,„ on S. For this purpose it is useful to introduce the 
following integrals: 

1 
z(/> 

dS 

and 

5(3 + /) (*) = 
Si5 M(/) (/*(/) - 3 ) gu)(x)=f3gu)(x) (15b) 

S 4 4 ( l+ / i 2
; ) ) 

and, in terms of Eshelby's hypothetical stress field Pjj, we 
have 

F,„ dS=-1- [(Pi,„ + i P?„, )dy+( P°2m - i P?„, )dy] (16) 

As shown in reference [1], the integral in equation (15a) can 
be simplified by mapping the elliptic contour to a unit circle in 
the X frame, using the transformation 

x=-\(a + b)X+(a-b)X\ 

From equations (15a), (16), and (17) we obtain 

gW (X) = ~ rrf(/)m l(P°2,„ +iP°Un )/( 

(17) 

(/) 

+ (P°2„,-iPlm)Jm] (18) 

where Py are related to £?• by equation (3). If \X\ > 1, i.e., 
for the matrix, 7(/) and / ( / ) are given by 

7 r / [ ( l + e ) - ( l - e ) / r ( / ) ] 
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where 

e = b/a 

and 

_ l+ieinn 
1 (/> - , . . i i </) i < J 

If \X\ < 1, i.e., for the inclusion, we have 

- 7i7 (1 + e) 
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r / 2i 
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( i%) 

(20) 

(21) 

(22a) 
l-/ 'e/* ( / ) 

-IT/ (1 - e ) 
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The elastic fields of the system can thus be expressed by the 
following equations: 

" l = 2 ( R [ L j [(Sll^/)+Sl2)S(/)(*) 

-^15 /"(/)g(3 + /) (*)]*</) J 

12 /*(/) ) # ( / ) (x) 
^ 1=1 J 

+ Si5g0 + n(x)]dzii)j 

M i = 2 ( R f l ) ! [Siskin-!)«(/)(*) 
* - / = i J 

-S44 /*(/) g(3 + /) (*)]*&</)] 

(23) 

(15a) and 

(24) 

Pn=2«fl>2 </)£(/)«] 
^ / = i y 
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v /=1 y 

Pl3 = —2CRJ £/*(/) g<3 + /)(*) 
^ 1=1 J 

Pl2=-2<RJ D /*(/)£</)(*)] 
v /=! 

The elastic displacements and stresses in the matrix are 
given by (23) and (24) with I(l) and 7 ( / ) given by (19). 
Equations (23) and (24) with / ( / ) and J{l) given by (22) 
provide the constrained field Uj and Pjj in the inclusion (Uj 
are also the equilibrium displacements of the inclusion). The 
actual elastic stresses in the inclusion are given by Py = Pjj — 
Pjj and are uniform. However, they are not continuous across 
the boundary surface S. To assure a perfect bond at the in
terface, the surface tractions across S are required to be 
continuous. If the boundary stresses of the matrix are denoted 
by pf), it is required that 

pg-Hy = Py tij = (Pjj - Pjj) rij, across S (25) 

An important consideration in the inclusion problem is the 
evaluation of the strain energy of the system. A detailed 
discussion has been presented by Eshelby [4]. For an elliptic 
inclusion the strain energy per unit height is found to be 

W=-{-irabPijE^j (26) 

2.2 The Inhomogeneity Problem. A useful conclusion 
obtained from the transformation problem is that the stress 
field produced by the uniform strain field Ey is also uniform 
in the inclusion. This result permits an extension of the 
analysis to the inhomogeneity problem. 

Consider that an elliptic inhomogeneity, with elastic 
constants C'MN (not necessarily restricted to the form of 
matrix (1)) that differ from the CMN of the matrix, perturbs 
an otherwise uniform stress field which results from the 
constant surface tractions Pfj rij applied at infinity. According 
to Eshelby [3], the elastic state of the system can be solved by 
introducing an equivalent inclusion, with the same elastic 
constants CMN as the matrix, which tends to undergo a stress-
free transformation. If Py produces Ey in the matrix in the 
absence of the inhomogeneity, the free deformations Ey of 
the equivalent inclusion can be determined from the ex
pressions, 

Journal of Applied Mechanics JUNE 1982, Vol. 49/355 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



P'j ~ Cykl (Ec
kt — E°kl) 

= Cijkl (Ec
kl+Eki) —Pfj (27)' 

With the help of equations (22) and (24), E\t can be obtained 
in terms of Py. The perturbation fields are thus given by 
equations (23) and (24) in the same manner as a transformed 
inclusion. The increase of elastic strain energy due to the 
presence of the elliptic inhomogeneity is simply 

AW=-irabP^Eu 

per unit height of the medium [1,4]. 

(28) 

+ e[2(Sl5/S44)JR eE°n +(1 + Re)E°l2] sin2<p] (32a) 

P?„ =P,n = f-^ \e[2(Sl5/Su)R eEH, +(1 +R e)E\2] cos2^ 

- l- [(R + e) (£?, -e2E?22)-2R(Sl5/S44)(l + e2)Es
l3] sin2„] 

Pi =^3„ = ™ [[/?(S1S/S„)(£?i -e2 £&) 
j 4 4 y v. 

(326) 

3 Results of the Transformed Elliptic Inclusions 
For an elliptic inclusion tending to undergo a uniform 

deformation £$ , equations (24), (15), and (18) give the 
constrained stresses Pjj inside the inclusion. From the relation 
Py = Pfj — P j , the actual elastic stresses in the inclusion are 
found to be 

Pn = ^p,[e(l+Re)(E?n+E2'2) + 2(R + e)E?n 

-4(S15/S44)P£?3] 

Pn= ^-^l(l+Re)(E?u+E?22) + 2e(R+e)£?22 

(29a) 

2S„Q' 

-2Re 

S«Q 

R 

+ 4(S15/S44)Pe£V3] (29b) 

- 2(R + 2e+Re2)E°n ] cos<p 

-2e[(l+2R e + e2)E3
22+(Sl5/S44)ReE3

]2] simp] (32c) 

Equation (32) provides a check for the boundary conditions. 
On the other hand, there is a jump across S for the stress 
components pf,, p3r and P„, P 3 / . It is found that 

R2 C 
Pa-Pit = ^—^i \sm2<pE?u + cos2<pE$2-sm2<pEj2 

+ 2(S15/S44) sin^)(sin2v5 —3cos2vs) (cos (pE21 -sm<pE°n)l 

(33a) 

-R (\ 

[(\+2Re + e2)E?n+(Sl5/Su)ReE?l2] (29c) " S „ Q 
[1-[e(l+Re)(E°n+E0

22) + (R + e)(E0
n+e2E0

22 

-13- ^^lR(Si5/Sn)(E°n-e2E°22) 
o44W 

-Re 

where 

- 2 ( P + 2 e + Pe2)£<jl
3] 

[2(S15/S44)ReE?23+(l+Re)Ei2] 

Q=l+3Re + 3e2+Rei 

(29d) 

(29e) 

(30) 

It is noted that when isotropy is approached (S,5 = 0 , P = 1), 
the plane strain components (E°n, E\2, E?l2) and antiplane 
strain components (£^3, £^3) are no longer mixed in equations 
(29) and can be treated separately as expected. 

The stresses in the matrix are determined by equations (24) 
with ga) (x) determined by (18) and (19). However, the 
boundary stressses pg- are of particular interest. Referring to 
local axes taken in the outward normal («) and coun
terclockwise tangential (t) directions on the boundary surface 
S, the angle <p between n and the major axis a is defined by 

sin*=
 ( e < v + W 2 ' C0Sip= (e*J+x2

2r2 (31) 

To satisfy the continuity of surface traction across S, given by 
equation (25), p*„, pf„, and pf„ must be equal to P„„, P,„, and 
P3„, respectively. It can be shown that 

D ft 

9"nn =Pnn = ^~Q [^ W- +R «) (£? + E\2) 

+ (R + e)(E3
n+e2El2)-2R(Sl5/S44)(l-e

2)E3
n] 

[ - (R+e)(E°n - e 2 £2 2 ) -P (S 1 5 /S 4 4 ) ( l+e 2 )£? 3 ] cos2¥. 

-2R(Sls/S44)(l-e
2)E3

n]--[(R + e)(£!l-e
2E2'2) 

-2R(Sl5/S44)(l+e2)E°n]cos2<p 

-e[2(Sl5/S44)ReEP2i+(l+Re)Ei2]sm2lp]) (33b) 

R2 ( 
V'i,-Py= ^-prt \2{cos<pE°2i-sm<pE°u] 

+ (S15 /Sii) sin<p(sin2 <p — 3cos2 <p) [sin2 <pE°n 

+ cos2<pE3
22 -sin2<pE]2\ J (33c) 

P„ = 
-R 

f2e[( l+2Pe + e2)£^3 
S44Q r - • - - • - - 2 3 

+ (S15 /S„ )P e£?2] cos*, + [R (S15 /S„ ) (£?,- e 2 ^ ) 

- 2 ( P + 2e + Pe2)£?3]sin¥>] (33d) 

The fourth-order tensor Cykj (ij,k,l= 1,2,3) is used here to replace 
CMN(M,N=1,2, . . . 6) with 1 replaced by the pair of subscripts 11, 2 by 22, 3 
by 33,4 by 23, 5 by 31, and 6 by 12. 

where 

Q* = sin2 <p (sm2 <p — 3cos2<p)2 +R2cos2<p(3sin2<p — cos2'p)2 

(34) 

Equations (33) are useful in the discussion of the stress 
contentration around an elliptic inhomogeneity. 

The equilibrium configuration of the inclusion is also of 
interest. The constrained strains in the inclusion can be ob
tained from equations (29), (3), and the relation Ey = Ey + 
Ejj. It is found that 

£fl = i J {Rid+Re)(EPu+E°22) 

-2(2R + 3e+Re2)E°u +2e[Rl(R+e) - (1 +R e)]E°22 

+ 4P(S15/S44)(2 + P 1 e ) £ ? 3 ] (35a) 
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+ 2[R)(R + e)-(l+Re)]E0
l]-2{l+3Re + 2e2)E°22 

-4R(Sl5/Si4)(Rl+2e)EPl^ (35b) 

E\,= X- [(I +2R e + e 2 ^ +(Sl5/Sn)R eE3,,} (35c) 

26 
[R(Sli/Sn)(E°]l~e2E°22) 

~2(R + 2e + Re2)E°l,l (35c0 

ESi= ~(l + R{ e + e2)[2(Sl5/S44)R e E°2i +(1 + R e)E°]2] (35e) 

where 

*-*('+£) (36) 

The constrained displacements Uf cannot be obtained directly 
from (35), but from equations (23), (18), and (22) 

U\=E?nxx+(E\2+u)x2 

U2:=(E)2-o>)xl+E22X2 

t / 5=2£!3* ,+2£ l 3 x 2 

(37A) 

(376) 

(37c) 

where 

l-e2 

[2 (S 1 5 /S 4 4 ) J Rc^3+( l+ J Re)^ 2 ] (38) 

W, 

W, 
/ 2/? \ 

• = ™b{~~~)le(\+2Re + e2)E2>i 

It is seen that both £§3 and E°n will produce a rigid body 
rotation which vanishes for a circular inclusion (e = 1). 

The strain energy per unit height of the medium can be 
calculated from equation (26) with P y given by (29). For the 
principal strains E°u ^ 0, £22 ^ 0, we have 

' = ™b ( j ^ T S ) [ e ( 1 +R e) (^1 + £ ^ 2 

+ 2(R + e)(E?ll
2+e2E2>2

2)] (39) 

For pure shear strain £?2 ^ 0, 

»7/ = m * ( ^ 7 i ) ( l + * e ) £ ? 2
2 (4°) 

V,JII y x 

and for antiplane shear strain £23 ^ 0, £^3 ^ 0, 

2R 
'44 G ' 

+ (i? + 2e + i?e2)£C32] (41) 

On approaching isotropy, W, and W,, agree with those 
reported by Jaswon and Bhargava [9], and Wm reduces to the 
previous result for a cubic symmetric medium [1], which also 
represents the solutions for an isotropic medium. 

For a general deformation inclusion, E\jt 0 (except for 
£33 = 0), the strain energy per unit height of the system is 
given by 

( 2S R2 \ 
—£— pe2 £^3 E\2 
o n o 4 4 y / 

- C E ^ - e 2 ^ ) ^ ] (42) 

The additional terms in equation (42) represent the interaction 
between £23 and E°n, and between E°n, E22, and £?, . When 
isotropy is approached (Sl5 = 0), the interaction terms vanish 
as expected. 

4 The Elliptic Cavity and Slit Crack 
As outlined in Section 2, the analysis of the transformation 

problem for an elliptic inclusion can be extended to the 
inhomogeneity problem in which a uniform applied stress 
field is perturbed by the presence of an inhomogeneity. In this 
section, we present an extreme case in which the 
inhomogeneity is an elliptic cavity (C,^/ = 0). The other 
extreme case of a rigid elliptic inhomogeneity (C'jjkl = 00) will 
be discussed in Section 5. 

Consider that an elliptic cavity perturbs an otherwise 
uniform stress field in the matrix produced by a constant 
surface traction T-, = PA

ij rij (n3 = 0) at infinity. By in
troducing an equivalent inclusion with stress-free defor
mations £?•, equations (27), with C-jkl = 0, lead to 

P ..= -p* (43) 

where Py are the elastic stresses in the equivalent inclusion, 
and the stresses in the cavity are P y + Pfj = 0, which satisfy 
the condition that no stresses appear in a cavity. By equations 
(29) and (43) the stress-free deformations of the equivalent 
inclusion are found to be: 

£?,=Sn [ ( l + ~)^i-JP242] + 5,5Pf,3 

"-i-hy*. 1+ 

E23 - r 544 (l+k)^~s^2 

&n = ^S15(Pi*i -P&)+\s„ ( l + | )pf3 

E3
l2 = -Sl5Pf1+Su ( 2 + 1 + 1 ) / ^ 

(44a) 

(446) 

(44c) 

(44c0 

(44e) 

The stress distribution in the matrix is given by py + Pfj, 
where py- are obtained from equations (24), (18), and (19), 
with Pfj related to £/} by equations (44) and (3). However, 
explicit expressions are not presented here. It will suffice to 
report the stresses at the edge of the elliptic cavity in view of 
their importance in fracture processes. By equations (32) and 
(43) it is easy to see that p*„ + P*n = 0, p?„ + Pf„ = 0, and 
P3n + Pin = 0. a s required for the traction free on the surface 
of the cavity. On the other hand, we have 

Pu+P?,= -~r {[R2 cos2¥>+(l- JR
2)sinV(l+2cos2^>)] 

x(Pf, -Pii)- 2JR|esinVP'; l
1 + — cos2<pP& 1 

- (SiS/Su)Rsm2p\R- - (R+ - ) ( 1 +2cos2^>) l p £ 

+ R(Sl5/Sn)[R cos2<p- (R + e) sin2<o(l +2cos2^)]Pf3 

+ sin2v» p? ( - + 2i? + e )+( l - J R 2 ) ( l+2cos2<^) P?A(45a) 

f(S15/S44)tf s i n ^ P I l 

2<p)](Pfl -P&) 

> 

and 

vi+pi = 
Q* 

-cos<p(l+2cos2<p)](Pfl -Pi2) 

-2(1 +2cos2^) e sin2 <p Pf!, + — cos2 <p P^2 

-COSip R (— + tf) + 2 ( l -# 2 ) s inV( l+2cos2^) lp 2
4 3 

+ sm<p[R(R + e) + (I -R2) cos2p(l +2cos2<p)]P?3 

Journal of Applied Mechanics JUNE 1982, Vol. 49/357 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



+ 2(Sl5/S44)Rcos<p\R- (— + 2R+e) 

xs inV(l+2cos2^) Pf2 j 

AW, = *ab(j^[(R + 2e) Pf,2 + ( - | + P ) P 

(456) 

It is noted that all stress components Py will produce both p* 
+ Pf, and pi + Pf, at the edge of the cavity and the 
anisotropy effect is strongly related to the factor R. On ap
proaching isotropy, equation (45) reduces to 

pf, +pf, = (2esinV-cos2¥>)Pf1 

2 , \ „ (1+e)2 

COS1 (fl + COslip )Pf7 -
e 

/ 2 \ (1+e)2 

( — cos2 <p + cos2cp )P22 sin2<c Pf, 
V e / e 

pf,+Pf, = ( l + e ) 
COStp 

P f 3 - s i n ^ Pf3 

(46a) 

(466) 

Equation (46a) can be shown to be in agreement with the 
result of Poschl [10, 11] given in elliptical coordinates. 
Equation (466) is the same as that reported in the previous 
work [5] for the antiplane strain inclusion problem. 

The extreme case of an elongated ellipse (crack) can be 
obtained by letting e ~ 0. Retaining only the terms of order 
1/e in equations (45), one finds 

tf,+Pf, = R ° ^ [2(coS¥> P£ - sinv Pf2) 
eQ* 

- (S15 / S „ ) sin<e( 1 + 2 cos2^>) Pf, ] 

Rcos<p 
Pa* +H = —^~ l2(Sl5/S44)sin<p(l+2cos2<p) 

eQ* 

X(sin^Pf2-coS ¥>Pf2) + Pf3] 

(47a) 

(476) 

Clearly, PA
] and Pf^ have no contribution to the stress 

magnification effect on an elongated cavity. As e — 0 

cosy? 
e = 0 
ip= TT/2 (a2~x}Y 

\x, I <a (48) 

The elongated cavity then becomes a slit crack, and equations 
(47a) and (476) approach 

Pll 

n* P 13 

Rx, 

{a2~x])ln 

Rxt 

(a2--x2)W2~ 

^^-2Pf2] 
"->! 1 J 

r 2 3 
2S, 

P'h\ 

(49a) 

(496) 

with singular points at X\ = ± a. When referred to the local 
coordinates (r, 6) at the crack tip (x{ = a + r cos6, x2 = r 
sin0), equations (49a) and (496) can be further simplified to 

*-*(i)""[|7«-"&] (50a) 

(506) 

It should be noted that the stress magnifications discussed 
here are based on the stress field along the boundary and are 
different from the stress intensity factor defined in fracture 
machanics. 

With the stress and strain fields known, it is a simple matter 
to calculate the elastic energy of the cavity. The increase of 
elastic energy per unit height of the system can be obtained 
from equation (28) with Efj given by (44). For biaxial tensile 
loading PA, * 0, Pf2 * 0, 

- 2 P P f , P £ j (51a) 

for transverse shear loading Pf2 jt- 0, 

AW„ = irab(^\( — + 2R + e)PA
2
2 (516) 

and for longitudinal shear loading Pf3 ^ 0, Pf3 ^ 0, 

AWln = irab(^)[(^+R)p23
2+(R + e)P?3

2] (51c) 

In the general case, the increase of the strain energy is given by 

AW=AW,+ AW„ +AW,„ 

+ irab S15 [(Pf, - P&)P?3 - 2 Pf3 P?2) (52) 

The additional terms in equation (52) represent the interaction 
energy between Pf2 and Pf,, and between Pf,, Pf2, and P^. It 
is noted that the interaction energy vanishes in an isotropic 
medium (S,5 = 0) or for a slit crack (e = 0). 

When isotropy is approached, equations (51) reduce to the 
results of Sih and Liebowitz [12]. For the special case of a slip 
crack (e = 0), equation (52) reduces to 

A ^ = ^ [ 2 S „ ( P f 2
2 +Pf 2

2 ) + S44Pf32] (53) 

which agrees with the expression reported by Yang and Chou 
[13], using the equivalence of a double-ended dislocation 
pileup to a slit crack. 

5 The Rigid Elliptic Inhomogeneity 
The perturbation of an otherwise uniform stress field Pf-

due to a rigid elliptic inhomogeneity can be treated in a similar 
manner by introducing an equivalent inclusion with stress-free 
deformations Efj. In this case C'ijkl = oo. Equation (27) then 
reduces to 

p?. = — Pd (54) 

which implies that there are no strains in the inhomogeneity. 
The stress-free deformations £$ can be obtained by solving 
(54) with Elj given by (35). The results obtained are 

* ' - i ^ ([*•»-'(;+1). F
A 

- [ P , ( P + 2 e ) - 2 Re\E&] 

,RSl5 

e SA4 
£ft (55a) 

^=4-^[K4+*)-?>>> 
- [Rt R - 2 (2 + Re)]E& ] + 2 ^ - Ef3 

£§3 = - ( 1 +Re) E& + ( Rf—, ) ^ £ f 
\l+R, e + e2 / Su 

(556) 

(55c) 

(RSi. 
4 - P , 2 \ 2 S , 

•) [R, (£f, - E & ) - — (£f, - e2 £f2)] 
/ e 

(55d) 

(55e) 
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The stresses inside the rigid inhomogeneity can be obtained 
from equations (27), (54), and (3). They are 

P „ + Pfl = C„ £?, + Cl2 E\2 + 2 C15 £?3 

-P22 + -£22 = Q 2 -£?i + C n £22 - 2 C15 £^3 

P3i+Pf3=Cl5(£Pu+£P22) (56) 

^ 2 3 + ^ 2 3 = 2 C44 £23 - 2 C15 £12 

P13 +Pfi=Ci5 (£?, -£§ 2 ) + 2C4 4 £?3 

P l 2 + P f 2 = - 2 C 1 5 ^ 3 + 2 Q 6 £ « 2 

The rigid body displacements of the inhomogeneity are 
given by Uf + Uf, with Wj given by (37) and Uf 
corresponding to Ef. More explicity, 

(57) 

and 

-(1 
1+p, 

1-
1+P, 

U\ + Uf=ux2 

Uc
2 + Uf = -u>xl 

f/§ •+- C/3^4 = 0 

-e2) 
C > pA 
, „2 ^12 

e + e2 

-e2 

e + e2 t515 -^23 ( S l l (58) 

It is clear that the rigid body rotation w depends only on the 
applied strain component Ef2, which is a function of Pf3 and 
Pf2. There is no rotation for a circular inhomogeneity (e = 1) 
or for the stress condition whenPf^ = PA

3 Sl5/(SU —Si2). On 
approaching isotropy, equation (58) reduces to equation (12) 
of reference [6], and the contribution of P23 vanishes. For the 
limiting case of a rigid line reinforcement 

>=-Ef2=Sl5Pf3-(Sn-Sl2)P?2 (59) 

The stresses in the matrix are equal to p,y + Pfj, in which Py 
are given by (24) and Efj given by (55). Explicit expressions of 
the stresses at the boundary of the matrix and the 
inhomogeneity can be obtained from equations (32), (33), and 
(55). For the purpose of illustration, we may examine a 
special case of an elongated rigid reinforcement (e < < 1). 

From equations (55), retaining only the terms of order 1/e, 
we have 

£?,= 

£ ? , = 

2 P 

e 

-2R 

[-1-
L4-R, 

•E?,+?±EA } 

y#&h-it«] 
*>-=rlrHr> (!£*+*] 
£ ? , = £ ? , =0 

(60a) 

(60b) 

(60c) 

(60cO 

in which Efx and Ef3 are related to the applied stresses by (5). 
Using the relations (32), (33), and (60), it can be shown that 
for e < < 1, 

R 
B° =P = 
Vnn * nn e S l l ( 4 - P 1

2 ) 

-R 

eSii(4-Rl
2) 

(l+cos2v?) Efi 

sin2ipEfl 

(6 la) 

(616) 

2 R 
P3« =Pin = —^T- COSpEft (61c) 

The discontinuous stress components p* , pf,, and P„, P3t are 
given by 

. n -2R3 c i r . . s12 

P?/ ~Pn = 7 7 ^ i ^ T ^ I LSm 2iP+ * 7 C°S * 

sin2 <p 

P„ = 

eSnQ' 

2 (1+2 cos2*>) left - - ^ - [cos2 2<p - sin2 <p]Ef3) 

2R , , 

^ l l ( 4 - ^ 2 ) S m ' * » 

(62a) 

(62b) 

pi-p3l= 
2 P 3 simp 

eS^Q * ^Sn(4-R1 

x 1+(1 +2cos2^) (sin2 V P + ^ C O S 2 <pj [fifi 

+ 1 + U j ) ( s i n 2 f~ 3 c o s 2 ^ ) c o s 2 <° R ] (62c) 

— 2 R 
Pn= —7,— sin<pEf3 e£44 

(62c0 

In the limiting case of line inhomogeneity (e — 0), <p — 0, -K at 
the ends of the major axis (^j = ± a, x2 = 0), and <p — ± 
7r/2 at all other boundary points (lx, I < a, x2 = 0). 
Therefore, along the boundary of a rigid line inhomogeneity 
pfj- = 0. On the other hand, significant stress magnification 
occurs at the end points of the line reinforcement, given by 

P""=P- = eSn(4
R

Rl
2)^ m 0 ) 

nb _ p _ ± 2 R pA 
P3n —r-in — _ XS13 

e i 4 4 

•2 /? r s1 2 n* -p» — 
e S H L s , 1 (4 -P 1

2 ) u S44 

(636) 

- ^ 1 (63c) 
AA -J 

P?„=P ,„=P„=P? ,=P 3 , =0 (63c0 

The " + " sign in (636) corresponds to the point x, = a,x2 = 
0, and the " - " sign to the point x{ = - a, x2 = 0. Equations 
(63c) reduce to those given in Jaswon and Bhargava [9] when 
isotropy is approached. Equation (636) leads to the same 
isotropic solutions for the antiplane strain problem. It is 
noted that significant magnification depends only on the 
applied strain components Efx and Ef3, which are functions 
of the applied stresses Pf{, P2 2 , and Pf3. 

The increase in elastic energy per unit height of the system 
due to the presence of a rigid elliptic inhomogeneity can be 
calculated from equation (28) with £$ of (55). For biaxial 
tensile loading (Pf,, jt 0, P$2 jt 0), 

A l f ^ M f t ^ - L (\RiR(Sn -Sl2KPti -Hi)1 

R 

-2[Sn(Pf1 +P& ) + S12(2 + Pe)Pf,P2
4

2] 

[e(S\2 P?,2 + S „ 2 P&2)+ - i (S u Pfl +Sl2 PAI)2]^ 

(K-P^I)1] 
2 e5 4 4 

For transverse shear loading (Pf2 ^ 0), 

(64) 
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AW„ - nab 
r i + 2 j 

L l+R 

2Re + e2 

e + e2 

R2-

( S „ - S l 2 ) 

+2(V)es"1 pA 2 
'\2 (65) 

And for longitudinal shear loading (P23 * 0, Pf3 ^ 0), 

AW„ • irab S, 
LLR(I+R, 

\)e 

(R2 

(\+R{ e + e1) 

\)(l-R{ e + e1) 

l-{\+Re) ^ 

+ 
R 
- +1 
e )]• (66) 

L Re(4-R,2) 

For an arbitrary external loading condition (P4 ^ 0), the 
increase of elastic energy is 

AW=AW,+kWu+AWIII + irab S, { 
1 

e(4-R]
1) 

x ({2R, ^R) (e2 Pft -PA
2)-R(Pfl ~e2 P^2) 

+ [Rt R(R, + 2e)-(5R + 4e + Re2)](PA
] - P ^ V B 

(\+2Re + e2 \ 

\j+-RTe^+Re> 
+ 2 )P?iK } (67) 

V! e + e2 

The additional terms in equation (67) represent the interaction 
energy between Pf{, Pf2, and Pf}, and between Pf2 and P ^ . 
On approaching isotropy, the interaction energy in (67) 
vanishes, and AWIt AW„, and AWlu reduce to the ex
pressions given by Yang and Chou [5,6]. 

The increase of strain energy due to the presence of a rigid 
line inhomogeneity (e = 0) is given as 

FA 2 + — FA 2 

^11 + T, -̂ 13 
AW=-ira2 R 

1 

LSn(4-^,2) 
(68) 

It is noted that AW depends only on EA
X and Ef3, i.e., it is 

independent of the applied stresses Pf2 and P^. As can be 
seen from the relations (5), the interaction energy between 
Pf\,PA2, and Pf3 still exists for a rigid line inhomogeneity. 

By comparing the results of this section with those obtained 
in Section 4, the following conclusions are valid. For a < 111 > 
slit crack, both the stress magnification and the increase of 
elastic energy depend only on the applied stress components 
Pfi'Pii' a n d PH ; there is no interaction energy between these 
three stress components. For a < 111 > rigid line in

homogeneity, both the stress magnification and the increase 
in elastic energy depend on the applied strain components EA

t 

and£"^3 (consequently on PA,, PA
2, and PA

3), and there is 
interaction energy between PA

X, PA
2, and PA

3. In addition, the 
rigid body rotation of an elliptic rigid inhomogeneity depends 
only on the applied strain Ef2, which is a function of Pf2 and 
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Disturbance at a Friotional 
Interface Caused by a Plane 
Elastic Pulse 
We consider a plane pulse striking the frictional interface between two elastic solids 
which are held together by compressive applied tractions and sheared. The pulse 
causes a disturbance involving separation or slip between the bodies, which 
propagates along the interface at supersonic speed. The extent of these zones is 
determined using a convenient graphical representation and the interface tractions 
are given in closed form. It is found that the results change qualitatively when the 
coefficient of friction exceeds a critical value. 

Introduction 

The interface between two bodies in unbonded elastic 
contact exhibits an asymmetric behavior with respect to 
tensile and compressive tractions, the latter being physically 
admissible while the former are not. Such an interface is 
described as "unilateral" in contrast to the "bilateral" 
bonded interface which can transmit normal tractions of 
either sign. 

The interaction of a plane elastic wave with a unilateral 
interface has been discussed in a number of recent papers 
[1-3]. The results can be obtained in closed form if the angle 
of incidence of the wave front is such that the disturbance 
propagates along the interface at a speed that is supersonic 
with respect to the materials of both bodies (i.e., if none of the 
reflected or refracted waves become surface waves). For this 
case, solutions have been given for an incident P or SV wave 
of harmonic form both with and without friction at the in
terface [1,2] and the results for the frictionless interface were 
extended to a wave of arbitrary form in [3]. The work of 
Miller and Tran aimed at developing approximate methods 
for treating more general friction laws may also be noted [4]. 

In this paper we consider the problem of a wave of arbitrary 
form incident on an interface with Coulomb friction. We 
assume that the static and kinetic coefficients of friction are 
equal. In general, we anticipate the development of regions of 
slip and separation at the interface and a major part of the 
problem is to determine the extents of these regions from the 
controlling inequalities which are: 

(a) The gap must be non-negative —i.e., there is no in-
terpenetration of material. 

(b) Normal tractions must be compressive. 

Contributed by the Applied Mechanics Division for publication in the 
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Discussion on [his paper should be addressed to the Editorial Department, 
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(c) Tangential tractions must not exceed the limiting value 
at which slip occurs. 

(d) Relative slip must be in the direction opposed by the 
tangential tractions-i.e., negative work is done by these 
tractions during slip. 

A simple method will be developed for determining these 
regions and the normal and tangential tractions at the in
terface. It will be shown that the behavior of the interface 
changes qualitatively when the coefficient of friction exceeds 
a certain value that depends on the elastic constants. 

Formulation and Method of Solution 

We consider two half spaces of different materials pressed 
together and sheared by tractions poo, q°° applied at infinity 
as shown in Fig. 1. We require l<7oo| <fp<x> to rule out the 
possibility of catastrophic slip. Now suppose that a plane 
elastic stress pulse with velocity c0 strikes the interface at an 
angle of incidence d0. The disturbance due to the incident 
pulse will propagate along the interface with velocity 

y = c0/sinc?o (1) 

and we restrict attention to the case where v is supersonic with 
respect to both half spaces. The disturbance will therefore be 
stationary with respect to the dimensionless moving coor
dinate 

rt = k0(xlsind0-c0t) (2) 

where the wave number k0 can here be regarded as the 
reciprocal of a characteristic length for the pulse. 

Following the notation of the previous papers we denote the 
velocity of propagation of P and SV waves in the lower body 
by cL, cT, respectively, and use bars to distinguish the 
corresponding quantities for the upper body. The angles of 
reflection and refraction Q, (i = 1, 2, 3, 4) are illustrated in Fig. 
1 and are related by the equation 

sin0o _ sine, _ sin02 sin03 sin04 

c0 cL cT cL cT 
(3) 
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The Bilateral Solution. We first consider the bilateral 
problem in which the incident pulse strikes a bonded in
terface. The solution of this problem is algebraically tedious 
but routine and will not be given here. Derivations for the 
related case of a harmonic wave can be found in most books 
on elastic waves-e.g., [5, 6] and the case of an incident pulse 
of arbitrary form can be treated in the same way or by 
superposition using Fourier integrals. 

For the supersonic case treated here, all the reflected and 
refracted pulses in the bilateral solution have the same wave 
form as the incident pulse and hence the tractions transmitted 
by the interface can be written in the form 

O22 = -poo + aF(r,)=N0(v) (4) 

al2=q<x> + (&F(V) = S0(r,) (5) 

where F(rj) is determined by the shape of the pulse [3] and CE, 
(B are constants depending on the material properties and 
angle of incidence. 

The Corrective Solution. The values of N0, S0 calculated 
for the bilateral problem may violate the physical conditions 
given in the Introduction in some region, in which case the 
bilateral and unilateral solutions will differ, separation or slip 
regions occurring in the latter. Note however that these 
regions do not necessarily coincide with the regions of 
violation in the bilateral solution. 

To treat this case, we develop a corrective solution which is 
superposed on the bilateral solution to give the unilateral 
solution. 

In the frictionless case [3], such a solution was obtained 
from results for a moving dislocation at the interface. The 
same method could be used here, but it proves to be 
algebraically more efficient to use the results for a force pair 
moving along the interface. 

We first consider the lower body alone, with a tangential 
force Q and a normal (tensile) force P acting at a point O 
moving to the right at supersonic velocity v over the surface as 
shown in Fig. 2. 

The solution is given by Eringen and Suhubi [7] as follows 

—- = ( -m2{\+m2
2)Q-{\+2m^m2 -m\)P] Hv) 

^ = [{\ + 2mxm2-m
2)Q-mx{\+m2

2)P]^-

(6) 

(7) 

where w, and u2 are the surface displacements, 5(rj) is the 
Dirac delta function and 

m2 

/ v2 \ ' 

/ v2 \ ] 

:COt0, 

=cote. 

(8) 

(9) 

R = (l-m2
2)

2+4mim2 (10) 

We now apply equal and opposite forces to the upper body 
(see Fig. 2) producing 

" ' ~.{m2(\+m\)Q-(\+2mxmi-m\)P\^- (11) 
drf jxR 

-~ = ((1 + 2m, m2 - rnDQ+iht (1 + m\)P) ^$- (12) 

where 

w 1 =cote 3 , w 2 =cote 4 , R = (\-ml)2 +Amlm2 (13) 

The force pair generates a gap 

g(rf) = u2-u2 (14) 

and a tangential shift 

- q 
Pa 

1*2 
SV(n = 4) 

P or 
( n - - 0 ) 

t i t ! 

Fig. 1 Incident (n = 0), reflected (n = 1, 2), and refracted (n = 3, 4) waves 

/• / / / ^ / s n, 
C, , C T 

L? ~~V V V V " 

, u 2 

- • s r ^ : v:- *v:-

X , M 

Fig. 2 Force pair moving at the interface with speed v. The two bodies 
are shown separated for clarity. 

h(r,) = ul-ul (15) 

Note that a positive value of h corresponds to the upper body 
slipping to the right over the lower body. 

Substituting from (6), (7), (11), (12) into (14) and (15), we 
have 

dg sin0, 

dh _ sinS, 
dri n 

(X2P-X,e)8(r )) 

(\iQ+\lP)6(v) 

where 

X,= 
ix [l+2mlm2-mj \+2m^m2-m\ 

sing, L irft JXR 

sine. /xR + - JxR }• 

X, = 
/t [m2(l+mj) m2{\+m\) 

+ -

(16) 

(17) 

(18) 

(19) 

(20) 
sine, L /xR fiR 

The dimensionless coefficients X,, X2, X3 also arise in the 
solution for an incident harmonic wave [2]. We note that X2, 
X3 > 0, but X, may be of either sign, and vanishes for 
identical materials. 
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Equations (16) and (17) can also be cast in terms of the gap-
opening velocity and slip velocity using equation (2). Thus, 

f(i?) = 
dij dt ' 

/:0c0sin6| 

M 
(\2P-\1Q)5(V), 

h(rj)--
k0c0sm&t 

(hQ + hP)Hv) 

(21) 

(22) 

The delta functions in these equations show that the force 
system produces a purely local effect. Hence, with a more 
general distribution of tractions S, (77), TV, (rj) at the interface, 
g, h will depend only on the local tractions of the corrective 
solution. 

Boundary Conditions 
In the unilateral solution, the interface may contain regions 

of stick, slip, or separation, in each of which two boundary 
conditions must be imposed. In addition, one or more 
inequalities must be satisfied corresponding to the physical 
conditions listed in the Introduction. We first consider the 
equality conditions. 

The solution is obtained by superposing the bilateral and 
corrective solutions and hence the total tangential and normal 
tractions are 

S(ij) = Sb(ij) + S,(i,) (23) 

N(v)=N0(v)+Ni(v) (24) 

The bilateral solution by definition involves no slip or 
separation and hence the unilateral values of g, h are identical 
with those of the corrective solution. 

Equalities. 
Stick. In stick zones, we have h'• = 0, g = 0 and hence from 

equations (21) and (22), Sx =0, TV, =0 . In other words, the 
bilateral tractions are unchanged 

S = S 0 , N=N0 (25) 

Slip. In slip zones, we must have g = 0 and hence g = 0, 

X2TV,-X,S, =0 (26) 

from equation (21). 
The second boundary condition is 

S= -fNsgnh (27) 

since TV must be negative. We define conforming slip as that 
for which X, /! > 0 and hence 

So + S, = -f{N0 + TV, )sgn\i (28) 

Solving (26) and (28) for S,, TV, , we find 

\2(S0+fN0sgn\i) 
S, = 

TV, 

X2 + IX, 1/ 

X, (S0 +fN0sgn\t) 

X2 + IX, 1/ 

and hence the slip velocity is 

• cL(X?+X2X3)(S0+/TV0sg»X,) 

/«(x2 + ix,iy) 
from equation (22). 

The total tractions are 

s=s0+s, = 

N=-N0+Ni = 

/sg«X,(X,S0-X2TVo) 

X 2 + I X , I / 

Xi SQ — X2TVQ 

(29) 

(30) 

(31) 

(32) 

(33) 
X2 + I X , I / 

In nonconforming slip X,/!<0, giving a change of sign in 
equation (27). A similar process gives 

S=-
/5,g/jX1(X1So-X2A/o) 

N=-

X 2 - I X , I / 

Xi So — X27V0 

X 2 - I X , I / 

h = 
c t(X?+X2X3)(So-/^o«nX1) 

(34) 

(35) 

(36) 
/ * ( X 2 - I X , I/) 

Separation. In separation zones, the tractions S, N are 
zero and hence from (23) and (24) 

S^-So, N, = -N0 (37) 

It follows from equations (21), (22) that 

i = ^ ( X 2 / V o - X , S 0 ) (38) 

/ j = ^ ( X 3 S 0 + X,N0) (39) 
V-

Inequalities. The physical conditions leading to 
inequalities serve to determine the extents of the various 
zones. 

Stick. In stick zones, we require that the normal tractions 
be nontensile and the shear tractions do not exceed the value 
at slip, i.e., 

7V<0, (40) 

\S\<-fN (41) 

The condition (41) includes (40) and we have already shown 
that in stick zones the bilateral tractions are unchanged. 
Hence stick is possible if and only if 

- / iV 0 >S 0 >/No (42) 

Conforming Slip. In conforming slip we still require 
nontensile normal tractions and hence 

X,S0-X2iVo>0 

since 

X2 + IX , l />0 

It is convenient to define the ratio 

X2 / = 
IX, I 

(43) 

(44) 

(45) 

in terms of which (43) can be written 

S0sgn\t >/7V0 (46) 

Furthermore, the definition of conforming slip requires 
X|/i>0 and hence from (31), (44), 

S0sgn\ > -JN0 (47) 

X? + X 2 X 3 >0 (48) 

Notice that both conditions (46) and (47) must be satisfied in a 
conforming slip zone. Clearly (46) is the stronger if 7V0 > 0 and 
(47) i f N 0 < 0 , since/, / > 0 . 

Nonconforming Slip. In nonconforming slip, the ex
pressions (34)-(36) for S, TV, and h all involve the multiplier 
(X2 - I Xi \f) which can be of either sign. We therefore con
sider the two cases separately. 

(a) f<f 
I f / < / ( i . e . , X2 > IX, \f), condition (40) gives 

S0sgn\i >/TV0 (49) 

as in conforming slip, but we now need X, ti <0 which implies 

S0sgn X, </TV0 (50) 

using (36). 
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Fig.3 Permissible ranges of S^sgnX-f forstick, slip,orgapforf<f 

Combining (49) and (50) we have 

fN0>S0sgn\l>fN0 (51) 

and hence nonconforming slip is only possible if N0 <0 , since 
/ < / • 

(b) f>f 
Applying similar arguments to the ca se /> / , we find 

JN0 <S0sgn\ </7V0 (52) 

Once again, nonconforming slip is only possible for N0 <0. 

Separation. In the separation zone, we require that the 
gap g > 0 . The equality conditions give an expression for g 
only, and hence we cannot deduce unique conditions on S0, 
N0 to be satisfied throughout the separation zone. 

However it may be possible to determine the point at which 
separation starts, since the crack must then have a positive 
opening velocity (gsO) and hence a negative slope 
{dg/dr)<0). From equation (38) this implies 

SoSgnXt s/N0 (53) 

At the other end of the zone where the gap is closing we must 
have 

S0sgn\ > /N 0 (54) 

If one of these two points can be determined uniquely, the 
other can always be found from the condition 

dg 
-^dv = 0 (55) 

where L is the extent of the separation zone. 

Graphical Representation. The inequality conditions 
developed in the foregoing are all expressed in terms of the 
relationship between Sa{rj)sgn\x and /V„(jy) and can con
veniently be summarized graphically. 

(a) f<f 
We first consider the case f<f illustrated in Fig. 3. The 

diagrams show the ranges of the function SgSgnXj for which 
stick, conforming, or nonconforming slip or gap are per
mitted. For example, stick is permitted only in the range 

fN0<S0sgn\,<-fN0 for 7V0<0 (56) 

These states cover all possible values of S0sgn\t and are 
mutually exclusive, so we can uniquely define the state at any 
given point on the interface. The procedure is best explained 

g<0 
V A conforming N N non -conforming la-S I stick 

Slip Slip g>Q 

Fig. 4 Graphical determination of slip and separation zones for a 
typical example, t<f 

g < 0 
[ 7 3 conforming | \ \ | non -conforming (imfi stick 

Slip Slip g>Q 

Fig. 5 Second example for 1 < f exhibiting a transition from separation 
to stick at D 

through an example. When the bilateral problem is solved, we 
find NQ as a function of r\ and hence plot the boundaries 
±/iV0, ±fN0 as shown in Fig. 4. Notice that N0 must tend to 
-pco away from the pulse, but otherwise the shape chosen 
has no particular significance except as constrained by (4) and 
(5). 

We next plot the value of SoSgnXj on the same graph. Away 
from the pulse, this function tends to q°° sgn\i which must be 
between ±JN0. To the right of point A in Fig. 4, the interface 
must stick, while between A and B only conforming slip is 
possible. To the left of B, a separation zone is developed. The 
gap increases from B to C where S0sgn\j is below the line fN0 

and then starts to shrink. The closure point, D, is found from 
the condition that the gap there is zero. Thus, we choose D 
such that the algebraic sum of the areas between the lines 
S0sgn\i and fN0 is zero. The location of D shows that in this 
case the interface passes from separation to conforming slip at 
the closure point and the interface sticks again at E. 

A second example is illustrated in Fig. 5. There, non
conforming slip is developed in AB and the closure point D 
lies in the stick zone, indicating a direct transition from 
separation to stick. Note, however, that a direct transition 
from stick to separation is not possible. 

It is clear from these examples that the controlling 
inequalities enable the arrangement of zones at the interface 
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Fig. 6 Permissible ranges of S0(>;)sgnX1 forstick, slip, orgap, f>f 

to be determined simply and uniquely once the bilateral 
solution is known. The appropriate tractions and 
displacement velocities at the interface can then be written 
down using equations (23)-(39). 

(b) />/ 
Corresponding results for the c a s e / > / a r e shown in Figs. 6 

and 7. From Fig. 6, we note that the ranges defined by the 
inequalities^ are not now mutually exclusive: three ranges 
overlap in fN0 > 5 0 ^ « X | >fN0 (which only exists for N0 <0). 
This suggests that certain problems may not have unique 
solutions. For the example shown in Fig. 7, stick must occur 
to the right of A, but the conditions in AB could be stick, 
nonconforming slip, or separation. Furthermore, no in
consistency arises in the regions to the left of B, whichever of 
these states is assumed. 

We notice from equation (38) that the gap will start to open 
with a nonzero velocity unless the separation zone starts at A 
where S0sgn\t =fN0. The condition that the gap opens 
smoothly can therefore be used to impose uniqueness on the 
problem and it has the effect of permitting only separation in 
the overlapping range. 

We note, however, that no physical principles are violated 
by a velocity jump at the transition to separation, and indeed 
a jump in tangential velocity is implied by the expression for 
li, (39), whatever conditions are assumed between A and B 
( f o r / < / , continuity of both g and h is automatically satisfied 
at the transitions from stick to slip and slip to separation if the 
incident pulse has no step changes). An alternative hypothesis 
is that stick, once established continues until the inequalities 
make it inadmissible, i.e., that the transition from stick to 
separation occurs at B in Fig. 7. 

A second paradoxical result for the case f>f is illustrated 
by the example in Fig. 8. If 1700 lies in the range ~fp°° 
<q<x>< —fp°°, it is possible that a gap opened by the pulse 
never closes, since S0sgn\\ need never pass above the line 
fNQ. The solids will then be separated to infinity on the left 
and are "unzipped" by the pulse, despite the presence of the 
compressive traction poo. This peculiar result can be traced 
back to the results for the moving force pair, equations (21) 
and (22). If P and Q are positive there is a limiting ratio of 
Q/P equal to / which, if exceeded, causes the force pair to 
leave a gap behind it, although the normal component P is 
tensile. 

g < 0 
I-' A conforming K"X| non - conforming j | stick warn 

slip slip g > 0 

Fig. 7 Determination of slip and separation zones for f > / 

^ ^ g < 0 
V A conforming | \ X| non-conforming (XXI stick ^ ^ 

slip slip ^ > 0 

Fig. 8 Example for f > fin which the gap cannot close 

In view of these various results, it is relevant to ask whether 
the condition/>/corresponds to any realistic combination of 
material properties. For similar materials, X, is zero and 
hence / is infinite. Values of / that might be exceeded by a 
realistic coefficient of friction, can be obtained by choosing 
materials with significantly differing elastic moduli and an 
angle of incidence such that the largest of 0,- is close to ir/2. 
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Two Analytical Solutions for 
Dynamic Crack Bifurcation in 
Antiplane Strain 
A semi-infinite crack is subjected to constant magnitude, dynamic antiplane loading 
at time t = 0. At the same instant the crack is assumed to bifurcate and propagate 
normal to its original plane or to propagate without branching. For constant crack-
tip velocities the stresses and particle velocity are functions ofr/t and 6 only, which 
allows Chaplygin 's transformaton and conformal mapping to be used to obtain two 
Riemann-Hilbert problems which can be solved analytically. Expressions for the 
elastodynamic Mode III stress-intensity factors are then computed as functions of 
the crack-tip velocity and some conclusions concerning crack initiation are drawn. 

1 Introduction 

Crack bifurcation is observed frequently in brittle 
materials. It is therefore of interest to analyze the situation 
when a single crack divides into two cracks. Eventually we 
would like to be able to formulate a criterion for bifurcation 
so that these events could be reliably predicted. Since the 
general Mode I problem is extremely difficult, two cases in 
antiplane strain for which the complete solution for the 
relevant stress component can be found, will be presented. 
These solutions will solve some of the difficulties found in 
attempting the Mode I analysis, and will open the way for the 
solution of some more relevant problems. They will also serve 
as good check cases for numerical calculations. 

2 Description of Problem 

The problem to be considered is as follows: initially in a 
stress-free, infinite, linear-elastic, isotropic full space, there is 
a straight, semi-infinite sharp crack parallel to the x-axis with 
the origin of the coordinate system at the crack tip as in Fig. 1. 
At time t = 0, a uniform stress, aBz = T„, is applied to the 
faces of the semi-infinite crack (from now on referred to as 
the original crack), where r0 is a constant. At the same in
stant, two cracks propagate out of the original crack tip, each 
with crack tip velocity, v, making an angle ± KT with the x-
axis. In [1] a method was proposed to solve this problem and 
although the problem for arbitrary values of K is not solved 
here, we use the notation in [1] so that connection can be 
made with the results presented there. 

With the polar coordinate system as in Fig. 1, the governng 
equilibrium equation is 
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Fig. 1 Bifurcation of a semi-infinite crack subjected to dynamic 
loading in antiplane strain 

d2W 1 
+ -

r 

dw 1 d2w 1 d2w 

dr2 ' r dr ' r2 dd2 c2 dt2 ' ( 2 - 1 ) 

where w is the displacement in the z direction and c is the 
shear wave velocity for the material. For ease of reference the 
same labels for important geometrical points in the problem 
are used as in [1]. 

The boundary conditions for loading case a are 

a0z = T0H(t), 0 = ± T T , r>0, (2.2) 

o-fc=0, 0 = ± K T T , 0<r<vt, (2.3) 

where H(t) is the Heaviside step function. Two plane waves 
and a cylindrical wave are generated by this loading as shown 
in Fig. 1. Outside the wavefronts, w = 0 and in the region 
behind the plane waves, but outside the cylindrical wave, the 
particle velocity is w = ±CT0/H for y 3 0. The jump con
ditions across the cylindrical wave front are 

[arz] + cp[w] = 0, (2.4) 

[w]+c[dw/dr]=0, (2.5) 
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where p is the mass density of the material. To first order in 
stresses and particle velocity, the conditions immediately 
behind the wavefronts are the same as those for the problem 
where no bifurcaton cracks are present. This implies that 
stresses and velocities are continuous across the cylindrical 
wave front, i.e. 

vv = 0 on r = ct, -

VV = CT0/JU on r = ct, — <0<ir , 

w = —CTQ/H on r = ct, • i r < ( 
7T 

(2.6) 

(2.7) 

(2.8) 

The problem is obviously antisymmetric about the x-axis with 
respect to displacements, so that only the upper half plane 
need be considered. 

From the jump conditions, we also conclude 

dw 
(2.9) de 

= 0 on -ct. 

On the original crack faces 

a„z = T0H(t), d = ir, r>0, 

which implies 

dw 
= 0, 0 = TT, r>0. dd 

(2.10) 

(2.11) 

Similarly, for traction-free surfaces of the bifurcation cracks, 

dw 

dd 
= 0, 8 = KW, r>0. (2.12) 

Note, however, that in the final solution the actual traction 
conditions must be met, not just the conditions on the time 
derivative of tractions since any constant tractions on the 
crack surface will satisfy the condition that time derivatives of 
tractions be zero. 

Following [1], we note that the problem can be written in 
terms of the two variables, 8 and s = r/t, since the particle 
velocity is self-similar. Hence, use of Chaplygin's trans
formation (see [1] for details) maps the physical plane into a 
semi-infinite strip in the 7-plane as shown in Fig. 2, where 

7 = 0-1-/0 = cosh- '(c/s) +/0. (2.13) 

The equilibrium equations transform into Laplace's equation 
for w in terms of independent variables /3 and 6. This implies 

vv = ReG(7), (2.14) 

where G is an analytic function of 7. 
The solutions for the particular cases K = 1/2, 0 will now be 

given. In these cases the stress a6z along the crack line ahead 
of the crack tip can be worked out explicitly, which is unusual 
in dynamics. We consider first the case K = 1/2. 

3 Solution for K = 1/2 
Following [1], the strip is conformally mapped into the 

upper half plane in the f-plane as in Fig. 3, where f = £ +/?/. 
In this case 

£w = y / c . £N = V/C, £ B - O O , £ D = 0 , (3.1) 

and the points A and E have been mapped into the points - 1 
and + 1, respectively. The conformal mapping gives 

f2 = l - ( l - i ; 2 / c 2 ) t a n h 2 ( 7 - / 7 r ) (3.2) 

Equating F(f) to G(y), we have w = Re f (f), where F(ft is 
an analytic function in f. The boundary conditions on the real 
axis in the upper half f-plane become 

-<x<£<-£M: vv = 0 5?-=°. (3-3) 

2 
Kit 

3w 
f ae 

= 0 

~ W = C T 0 / ^ 

V "B 

4= ae = 0 

-w = 0 

Fig. 2 The 7 = /3 + W plane 

a w 
at 

= 0 ft 
ZJli 

aw 
a£ 

= 0 

Fig. 3 The f = £ + /ij plane 

• £ M < £ < 1 : o0z=0 
dw 

dr) 
= 0, (3.4) 

K£<£ f l: w = 
CT0 

£s<£<°° : vv = 0, 

dw 
~df 
dw 

1)¥ 

dw 
-0 - — — = 0 , 

= 0 

o% 

dw 
=0. 

(3.5) 

(3.6) 

These boundary conditions together with w = ReF( f) pose 
a standard Riemann-Hilbert problem in the f-plane once the 
definition of F( f) is extended to the lower half f-plane. The 
most suitable way to do this is to require for fin the lower half 
f-plane that F' (f) = —F' (f), where the bar denotes complex 
conjugate (see Muskhelishvili [2] chapter 13 for a discussion 
of a similar analytic continuation in the plane-strain half-
plane problem). This implies that the boundary conditions in 
equations (3.3), (3.5)-(3.6) are satisfied automatically. The 
problem is then to find the analytic function F'(J) such that 
for f = £, - £M < £ < 1, F' + (f)1 = F' - (f) where superscript 
+ or - means the limit of the function as f —• £ + /0 or f -- £ 
— /0, respectively. 

The Riemann-Hilbert problem is not completely specified 
however until the behavior of F' (f) at all singular points and 
as f — 00 is specified. This can be done by requiring that when 
F ' ( f ) is integrated to give F(f), Re F{£) satisfies the con
ditions on the £-axis and that at the crack tip, the time 
derivative of stresses have the appropriate singularity. An 
asymptotic analysis of the deformation fields about a 
dynamically propagating crack tip, similar to that given by 
Freund and Clifton [3] reveals that terms like aez must be 
singular as distance from the crack tip to the power — 3/2. 

The solution to the Riemann-Hilbert problem is of the form 

F'd) = (f-ir l / 2(f+y/c)- , / !r", (3.7) 
where n is an integer. Any combination of terms that satisfies 
the conditions given in the foregoing must in general appear in 
the solution. When n = 0, the conditions on w can be met, but 
ffte is only square-root singular at the crack tip. To obtain the 
correct singularity at the crack tip, there must be a term with n 
= 2. To meet the conditions on w with this term, a term with 
n = 1 must also be included. The appropriate form for F' (f) 
is 

F'(n=i({-l)-'/lU+v/c)-'A(A+B/{+C/f). (3.8) 

The expression for F' (f) given in equation (3.31) of [1] for 
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K = 1 / 2 agrees with equation (3.8) only if B = C = 0. 
However, B and C must be nonzero to obtain the necessary 
singularities in the particle velocity and the time derivative of 
stress. For this reason the results obtained in [1] for K = 1/2 
are incorrect. Finally, note that terms involving f" for n > 1 
or n < - 3 cannot be admitted in equation (3.8) without 
either violating the boundary conditions or introducing 
inadmissible singularities. 

Integrating equation (3.8) with respect to f, we obtain 

F(n=iAln[tf-iyA+({+v/c)v']2 

+/c(c/1))(f-i)«(i-+D/c)Kr' 

-i[2vB-(c-v)C](c/v):/'(2v)-[ 

r2i;/c + ( l - i ; / c ) n 

L (1 + v/c)? J sin" (3.9) 
(l + y/c)f 

where D = constant. The term involving inverse sine gives rise 
to a logarithmic singularity in w as r — vt. Therefore we 
require 

B = C{c-v)/2v. (3.10) 

Matching the condition W = CT0/^ for 1 < £ < £fl requires 

A=cra/ \x%, D = cr0/fi. (3.11) 

To determine the stress-intensity factor we must work from 
.. In general, 

dw 

**[F'M§ii>l (3',2) 

so that 

dw 

dd 

For i 

--Im\ (r-tvc)(r+u/c) , / ;u + r),/i 

+ c 

&\-v2/c2)'A 

(t+v/c)-(v/c)({~\) 

2{v/c)f 

= 7r/2 and r > vt, we find 

/XTT 

)]] 

f 
/ s2 - v2 \ ' 

(3.13) 

(3.14) 

and that 

< 4 " r 

3vv 

~3fT 

( ^ ) 
To 

/ c + y \ 

lTr(t-r/c)'A(r/v-

U-r/c)v' -
(3.15) 

(r/v~t)v2 J 

where the superscript a on <jfe indicates loading case a. 
Integrating with respect to time from / ' = r/c to t' = (we 

obtain 

<4(/->y/,0 = ?r/2) = 

- / i C ( c / y + l ) t ; - | 2 - ' / i ( c / y 

+ 2 

•1 ) V r /y- / 

+ iiiC(<:/y-

We note that as r -

A(C/V-\)IA[2(T0/-K) 

, / t-rfc \ 

\ r/v-t J 
(3.16) 

y / 

tan" f ± ^ L ) ' / 2 « * - ( - ^ ± ) ' " + (3.17) 
V r/v-t ) 2 V t-r/c > 

From the asymptotic analysis of the deformation field about a 
dynamically propagating crack tip, we see that it is terms like 

(r—vt)" where n is an integer such that n > 0 which causes 
crack-face tractions to exist. In this case, the only term of this 
form is the constant term and for zero crack-face tractions we 
require 

/j.C(c/v+l)v-1 = - 2 T 0 / T T . (3.18) 

The stress ad! then has the very simple form 

% (r>vt,d = TT /2 ) = — 2'A (1 - v/c)'A ( C' r ) . (3.1 
7r V r — vt / 

9) 

The stress-intensity factor for K = 1/2 is 

K"n, = 1 i m (2 ?r),/! (r - JV) Y'ah(r>vt,e= TT/2) 

= 2TT-'AT0(ct)A(I-v/c) (3.20) 

We now consider loading on both the original and the 
bifurcation crack faces (case b). The boundary conditions are 
given by equation (2.2) and 

aez=-T0H(t), 0 = TT/2, 0<r<vt, (3.21) 

where the negative sign ensures that the loading on d = ir/2 
and 6 = ir has the same sense. In the limit as r — vt, the 
constant term in equation (3.16) must now equal - T 0 . The 
stress-intensity factor for K = 1/2 for case Z? is 

Kl;n=2TT-'AT0(ctyA[(l-v/c) 

+ 2 , / 2(y/c) , / !( l -y/c) t / ;] . (3.22) 

By superposition, the stress-intensity factor for K = 1/2 and 
the loading on the new crack faces only (case c) is [from 
equations (3.20) and (3.22)] 

A:j„ =2(2/ir)'/1T0(cO'/i (y/c) , /!(l -v/c)'A. (3.23) 

4 Solution for K = 0 

We now consider the case when the crack propagates 
straight ahead without bifurcating. The stress-intensity factor 
for this problem is incorrectly given in [1]. In the mapping 
from the 7- to the f-plane 

5M =0, £N = v/c, kB=c/v, £ D =0 , ^ = - 1 , ££ = 1, 

(4.1) 

so that 

1 + (v/c)cosh(y — iir) 
f= - (4.2) 

(v/c) + cosh(-y — iir) 

The boundary conditions in the f-plane are the same as for 
the case K = 1/2 with the foregoing values of £M, %N and £B. 
The solution to the Riemann-Hilbert problem is 

HA+B/n (c/v)'A(c/v-\)'A 

F'il) (4.3) 
(t-c/v) ?A({-lYA 

Note the extra term C/f2 that appeared in equation (3.8) does 
not appear here as it would cause the stresses at the crack tip 
to be more than square-root singular. Integrating, we obtain 

• [ $ • * ( ! - J ; / C ) * - K f - 1 ) * ] 2 • 
F({) = -i(A+Bv/c)ln[-

/v) J [ ( l - y / c ) ' / ! + l ] 2 ( r - c / y ) 

- ;2(1 - v/c)'AB({- l)'A r Vl • (4.4) 

Satisfying the condition on w on the £-axis for 1 < £ < %B, 
gives 

A+Bv/c= -CT0/[nr. (4.5) 

To determine the stress-intensity factor we need to find <j&. 
The relation in equation (3.12) gives 

dw . f (A+B/n(t-v/c)(l + ?)'A 

ml (v/c)(l+v/c)'A(t-c/v)?A ->' 38 ""C (y /c ) ( l+y /c ) ' / ! ( f -c /yR l / : 

For 0 = 0 and r > vt, we find 

(4.6) 
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\c s—v c/ 
(4.7) 

and that 

ifez=!iB(\-v2/c2) 
(ct-r)'A 

{r-vt)in 

n(A+Bv/c) (ct-rf 
ct(r-vt)Vl 

Integrating with respect to time from t' = r/c to / ' 
obtain 

&L (r> vt,6 = 0) = fiB2v-' (1 - v2/c2)( —— ) 
\ r — vt / 

(4.8) 

= / we 

- jxl(vc) - Vl (A + Bel v) tan -
V r/v-t / 

, / ct-r \ 1/2 

- l - ^ c - ' ^ + B y / c J t a n - 1 . (4.9) 
\ r—vt / 

For zero loads on the crack faces that have extended out from 
the original crack tip, we require, using the discussion after 
equation (3.17), 

- fi2(vc) ~ 'A (A +Bc/v) TT/2 

+ IH2C-,(A+BV/C)TT/2 = 0. 

Using equations (4.5) and (4.10) we have 

A+Bc/v = — (v/c) v'CT0/ixir, 

B= (V>nr)u(l -(v/c)'A)/(\ -v2/c2). 

Then 

aa
0z(r>vt,d = O) = 

2 ^ [ ( ^ ( ^ ) ( ^ - ) , / 2 - t a n - ( ^ ) 
• ? r ^ V r—vt / V r — vt / 

(4.10) 

(4.11) 

+ tan- . (^^) ' / 2 ] . V r/v-t > J 
(4.12) 

To obtain an independent check on equation (4.12), the 
same problem was also solved by means of Fourier transform 
techniques. By using the one-sided Laplace transform on time 
and the Fourier transform on the spatial coordinate x = x — 
vt, in conjunction with an application of the Weiner-Hopf 
technique, the transformed stress was obtained. The inverse 
transform was evaluated by means of the Cagniard-de Hoop 
method and the solution obtained verified equation (4.12). 

The stress-intensity factor for K = 0 is 

Ka
m =\im(2-K)'A{r-vt) :/io„z (r>vt,6 = 0) 

= 2(2/7r)'/! T0 (ct)'A(\ - (v/c)'A)(\ - v/c)'' (4.13) 

It should be noted that the solution for the stress-intensity 
factor for the bifurcated cracks, in the limit as K — 0, is ex
pected from consideration of energy flux into the crack-tip 
regions, to be 2 ~ Vl times the value given in equation (4.13) for 
crack propagation with no bifurcation. 

To treat loading on the propagating crack faces as well as 
on the original crack faces (case b), we specify the boundary 
conditions given by equation (2.2) and 

oH=-T0H(t),8 = 0, 0<r<vt. (4.14) 

In this case we require that the right-hand side of equation 
(4.10) be - r 0 , so that 

A+Bc/v = 0, B=(T0/,X-K)V/(\-V2/C2). (4.15) 

Then 

at (r>vt, e = 0) = 2 
r0 U ct-r \ 

•K (A r-vt ) 

•--(T^n- (4.16) 

and 

K'{n =2(2/7r),/2T0(c/),/l(l ~v/c)'A. (4.17) 

By superposition, for K = 0 and loading on only the crack 
faces that have propagated out from the original crack tip 
(case c) 

oi
0z(r>vt. 

and 

•K y. V r — vt / 

V r/v-t I r 
(4.18) 

K\u = 2(2/ir)'A rQ (ct)'A (v/c)'A(\-v/c)'A. (4.19) 

The problem of the bifurcation of a stationary crack in 
Mode III when 0 < K < 1/2 was considered by Achenbach 
[1]. The inversion of the conformal mapping for K ^ 0, 1/2 
does not appear to be possible. This would preclude obtaining 
any further analytical results for « ^ 0, 1/2 using the method 
described in the foregoing since it would not be possible then 
to determine the behavior of f ahead of the crack tip (that is 
on 9 = KIT, r > vt). The correct choice of F' (f) could not be 
made then and the integration of <re, would not be possible. 

The stress-intensity factors obtained in this paper for K = 
1/2, 0 differ significantly from those obtained in [1]. These 
analytical results suggest that the expression derived therein 
for the stress-intensity factor is not correct for any K. 

5 Conclusions 

Due to the type of loading considered it is not physically 
reasonable to expect that the foregoing results model the 
bifurcation of a rapidly propagating crack properly. This is 
not a feature only of the preceding solutions but of any model 
in which the resulting problem can be described as self-
similar. 

However a reason why a crack might bifurcate can be 
found in the foregoing results. For v/c > 1/9, K"({' (K = 1/2) 
is greater than K'{tf (K = 0, no bifurcation). Therefore if the 
original crack begins to propagate as modeled in the 
foregoing, it would be expected to do so as a bifurcated crack 
if the speed of the crack tips was greater than v/c = 1/9. It 
would be tempting to claim that the preceding conclusions 
apply for an initially rapidly propagating crack which sud
denly stops and bifurcates, but obviously this can not be 
proven here. 

An alternative point of view is to consider the crack-tip 
region for short times and compare the total energy flux into 
this region for the two cases. For short times, the energy flux 
into the crack-tip region for K = 1/2 (including the con
tribution of both crack tips in this calculation) is greater than 
that for K = 0 for all values of v/c. This again indicates that 
bifurcation at initiation with K > 0 is the more favorable 
situation. Obviously, this can only apply to the initiation 
event and says nothing about continued propagation. In fact, 
for the type of loading considered, it would be surprising if 
the crack tips continued at the same velocity at which they 
initiated. 

Finally, it is pointed out that for v — 0, the stress-intensity 
factors for the bifurcation case when K—0 and K = 1 / 2 are 
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equal. Whether this is true for arbitrary values of K can not be 
shown here. However if it is, it will have interesting im
plications concerning fracture of brittle materials at low 
velocities. Also, it is noted that A ,̂, (K= 1/2) equals Kc

w O = 0, 
no bifurcation). 
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SI-9 ASME Guide For Metrication Of Codes And Standards SI 
(Metric) Units First Edition 
Prepared by A M Smolen 
Designed to be used with the 1980 Edition of Ihe ASME Boiler 
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SI-10 Steam Charts 
Author James H. Potter 
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Dynamic Propagation of a Kinked 
or Bifurcated Crack in Antiplane 
Strain 
An initially unloaded, semi-infinite, stationary crack is assumed to kink or bifurcate 
at time t=0 and the new crack tip(s) propagate out along a straight line at a 
constant velocity vCT. A Green's function, consisting of a dislocation whose 
Burgers vector is growing linearly with time, that is suddenly emitted from the tip of 
a stress-free semi-infinite crack and propagates out along the kinked crack line at 
constant velocity u, is used to form a Cauchy singular integral equation. This 
equation is solved using standard numerical techniques and the stress-intensity 
factor is obtained as a function of crack-tip speed VCT and kink angle 8. The 
bifurcation case is treated in a similar manner. Finally, some conclusions con
cerning crack initiation and propagation are drawn. 

1 Introduction 

The problems that have been solved involving dynamic 
propagation of cracks are restricted mainly to geometries in 
which the line of crack propagation is straight. Techniques 
have now been developed to take into account time-dependent 
loading and arbitrary variations in crack-tip velocity for a 
semi-infinite crack in an infinite, isotropic, linear-elastic 
body. The work in antiplane strain has been extensively 
reviewed by Achenbach [1] who, with his co-workers, has 
made many contributions in this area. In a series of papers 
[2-5], Freund has essentially solved the general problem in 
mode I. This area has been reviewed in [6] by him. 

When a crack is initiated by impact loading in brittle 
materials, such as glass, the crack is frequently observed to 
propagate into the body and then bifurcate into two branches. 
Under suitably high loading, these branches will again 
bifurcate, repeating the pattern. Experimental observations 
[7-9] have shown that the included angle of the branches of 
the bifurcated crack is approximately 25-40 deg, and the 
decrease in velocity of the bifurcated crack tips from the 
crack-tip velocity just prior to bifurcation is in the region of 
10 percent. 

The problem of a rapidly propagating crack in plane strain 
that suddenly bifurcates is too difficult to solve at present. To 
reduce the problem to a tractable level, the antiplane-strain 
(mode III) problem is considered, and the simpler problem of 
an initially stationary, semi-infinite crack in a stress-free, 
isotropic, linear-elastic, infinite body is solved. This problem 
was considered in [10] and two particular cases in [11], where 
the self-similar nature of the solution allowed the problem to 
be represented as a particular Riemann-Hilbert problem that 
could be solved analytically. In [24], Aboudi has used a finite 
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difference scheme to solve the skew crack problem discussed 
in the following. 

2 Problem Definition 

We consider a stationary, semi-infinite, straight crack in an 
initially stress-free, isotropic, full space. At time t = 0, a. single 
crack (for the kinked crack case) or two cracks (for the 
bifurcated crack case) start propagating out from the original 
crack tip at an angle 5 or angles ± 8 to the original crack line 
with constant crack-tip velocity(ies) vCT. Also, at time t = 0 
the loads are applied. The loading cases considered are: (1) 
constant tractions on the original crack faces suddenly applied 
at t = 0 with traction-free crack faces for the kinked (or 
bifurcated) crack, and (2) uniform tractions appearing on the 
kinked (or bifurcated) crack faces with zero tractions on the 
original crack faces. The geometry and stress wavefront 
pattern for the bifurcated crack and loading case (1) is shown 
in Fig. 1. 

Fig. 1 Geometry and stress-wave pattern for the bifurcation of a semi-
infinite crack subjected to step-function loading on the original crack 
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For both geometries, loading, due to a stress wave of 
constant magnitude whose wavefront is parallel to the 
original crack, which strikes the original crack at time t = 0, 
can be constructed by superimposing the result of loading case 
(1) with cosSx the result of the loading case (2). This case (3) 
was considered by Achenbach and Varatharajulu [12] for the 
kinked crack case where the same method was used as in [10]. 

Loading by a planar stress wave of constant magnitude, 
whose wavefront makes an angle a with the original crack 
line, is also considered for the kinked crack case. Again the 
problem with this loading, case (4), can be solved by using two 
simpler loadings, al though this will not be done explicitly 
here. The case when 5 = 0 has been solved analytically by 
Achenbach [13] and Kostrov [14]. 

3 M e t h o d of So lut ion 

The method of solution follows that which was used by 
Burgers and Freund [15, 16] (in [16] an error in [15] is 
corrected). Only the kinked case will be described in detail as 
the bifurcation case can be obtained with only minor 
modifications. For the types of loading and geometry changes 
considered, we note that the stresses and particle velocity are 
self-similar, i.e., they are functions of /•// and 8 only. A 
Green's function is constructed that also has this property and 
with this result, a Cauchy singular integral equation is for
mulated. 

Consider a screw dislocation (Fig. 2a), with a discontinuity 
in displacement in the j>(=j>)-direction (out-of-plane direc
tion) along the line 8 = 8 and Burgers vector (displacement 
discontinuity) growing linearly with time. The dislocation 
appears at time t = 0 at the origin of an isotropic, linear-elastic 
full space (no crack present), with one end propagating out 
from the origin along the i-axis (0 = 5) at constant velocity u 
and the other end fixed at the origin. The z-axis is per
pendicular to the line 6 = S and the only nonzero 
displacement is w in the.y-direction. The initial conditions are 

w = 0 for t<0. (3.1) 

Since the problem is antisymmetric in displacement about the 
i -axis only the half plane z > 0 need be considered. The 
boundary conditions for this half plane are 

w{x) = AtH(ut-x)-AtH(~x), z = 0 (3.2) 

where H is the Heaviside step function, and A is a magnitude 
factor required for dimensional consistency. Zero initial 
conditions are used for this and all the problems that follow. 
The Cagniard-de H o o p technique for inverting Laplace 
transforms is used in solving the foregoing problem and the 
relevant stresses are 

ag(r/t, 8; u) = 

o?y(r/t, 8; u)--

I m \ , ^VTTKi d{r/r), (3.3) 

M 7 r / r (2d+\m\) 
•w J * (A+oQ2 

f) 
9X 

•d{r/r), (3.4) 

' ( T ) 
and 

X = T/rcof8 + i\s,m~8\(T2/>2~-b2)Vl, /3(X) = (62 - \2)'A (3.5) 

where/-2 = ( i 2 + z2), tand = z/x, b=\/c, p. is the shear 
modulus , c is the shear wave speed of the material, and 
d=\/u. The branch cut for /3 is taken along the Re (X) axis 
from X— - oo to X= —b and \ = b to X— oo. Superscript D will 
always be used to refer to this dislocation problem. Note that 
along any radial line, constant magnitude stress levels 

Fig. 2(a) Geometry for a dislocation, suddenly appearing at the origin 
and propagating along the x-axis at constant velocity u; (b) point loads 
propagating out along the original crack faces at constant velocity v 

propagate out from the origin with velocity v = r/t and that 
the stresses cr^, afp have a single pole at r/t= u, 0 = 0. 

Instead of thinking of the dislocation appearing in an in
finite body with no crack, we consider the original semi-
infinite crack to be present with exactly the correct tractions 
appearing on the crack faces so that no relative displacements 
occur between the crack faces of the semi-infinite crack. These 
tractions are given by the stresses for the foregoing problem 
evaluated along 8=(ir-5). 

To create traction-free crack surfaces, the negative of these 
tractions must be applied to the faces of the original semi-
infinite crack. This can be done by using the superposition 
described by Freund [3]. For this superposition the solution to 
point forces that propagate out along the faces of the semi-
infinite crack at a constant velocity v is required. The point 
forces start at the origin at time / = 0 and their magnitude 
grows linearly with time (see Fig. 2(b)). This problem is anti
symmetric in displacement and therefore only the half plane 
z > 0 need be considered. The boundary conditions are 

a,y(x<0) = ^AtS(vt + x), z = 0, (3.6) 

w(x>0) = 0, z = 0, (3.7) 

where A is an amplitude factor used for dimensional con
sistency. The relevant stress components are 

^(r/t&v)--

u.A , [>"' 
— <flm j8+ (X) — 

3 1 1 
(3+(co) (X-«) 

3X 
d(r/r), (3.8) 

' ( T ) 
a'^(r/t,6;v)--

HA 

Im\ 
d\ 

/3_(X) doL/3+(a>) (X-o)) -

' ( T ) 

d(j/r), (3.9) 

and 

P+m = (b + X)v', ^_(X) = ( 5 - X ) l / ; 

where X is defined as in equation (3.5) with 8 replaced by 8 and 
r2=(x2+z2), tan0 = z /x , and u=l/v. Superscript PL will 
always be used to refer to the point load problem. The 
negative of the stresses due to the dislocation along the 
original crack line is superimposed with the stresses due to the 
point force problem over all velocities v, from zero to c. When 
the result of the superposition is added to the dislocation 
problem, the solution to a screw dislocation, whose Burgers 
vector grows linearly with time, and which appears at time 
' = 0 at the tip of a semi-infinite crack and propagates at 
constant velocity u along the line 8= 5, is obtained. This result 
will be used as the Green 's function required to solve the 
Cauchy singular integral equation. The stresses due to the 
superposition are given by 

o^{r/t,8\u) 

io fxA 
-~o%(r/t,6;v)og,((r/t)'=v,6' = ir;u) dv (3.10) 
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(where a = x or z), and therefore the stresses to be used as the 
Green's function are 

aiy{r/t,~6\u) 

--<%y(r/t,6;u)-<rlY(r/t,6;u). (3.11) 

Note that the superposition is most easily performed in the x-z 
coordinate system but that the stresses for the Green's func
tion are required in the x-z coordinate system. Care must be 
taken when evaluating o§ and <r̂  along 0 = 0 as discussed for 
a similar situation in [16]. It should be pointed out also that 
o-(r/t,6) is square-root singular with respect to rlt at the tip 
of the semi-infinite crack, and that the faces of the semi-
infinite crack are traction free. 

Using the superposition of the screw dislocations over their 
speed of propagation, u, the stress at any point in the body for 
an arbitrary distribution F(u) of such dislocations, each 
propagating with velocity u, can be found. The ais, stress can 
be evaluated along 6=5 and equated to the negative of the 
tractions across this line due to loading case (1) being applied 
to a semi-infinite crack (with no kinked or bifurcation cracks 
present) or to the applied stresses in loading case (2). The 
other loading cases can be treated in a similar manner. In this 
way, a Cauchy singular integral equation is obtained; for 
example, in case (1) 

s(r/t,6 = 0) 
]->CT 1 

-o%,(r/t,6 = 0;u)F(u)du. (3.12) 

The numerical solution of Cauchy singular integral 
equations is now fairly routine after the initial work by Er-
dogan and co-workers [17, 18] (in the solid mechanics field). 
Numerous investigations of the static problem equivalent to 
the one described in the foregoing have been considered, and 
Lo [19] has listed many of these references. From [15, 16] it is 
known that F{u) =0 [(vCT - u) v'] as u — vCT. As u —0 the 
stresses are known to have a maximum singularity (square 
root) with respect to rlt at the original crack tip. This 
singularity will occur only when the loading on the kinked (or 
bifurcated) crack faces is square-root singular. Otherwise the 
stresses at the crack tip will be less than square-root singular. 
Since the Green's function is already square-root singular at 
the original crack tip and if the form [15, 16, 19, 20] 

F(u) = 
gM 

(3.13) 

where g (u) is a bounded function, is assumed the condition 

g(n = 0) = 0 (3.14) 

must be imposed. This technique of handling the behavior at 
u = 0 has been used numerically in [19, 20]. Muskhelishvili 
[21] uses a similar method for the plane-strain problem of a 
punch applied to a half space. 

The dynamic stress-intensity factor is given by 

KIU =lim (2-K)v'(r-vCTt)'Aoz)Ar/t,e = 0) 

(27r),/j(l - v2
CT/c2)g(vCT)ty'/vc (3.15) 

For the bifurcated crack case, the solution to a dislocation 
propagating along 6= - 5 is also required. Let q°l (q°2) be the 
solution for a dislocation, whose Burgers vector is growing 
linearly with time, and which suddenly appears at the origin 
and propagates along 6=5(6= - 5) at constant velocity u (<r°x 

is the same as a° in equations (3.3-4) and the same applies for 

(f1 if the x-axis lined up with 6= -5 instead of 6=5). The 
stresses due to the superposition are 

4^(r/t,6;u) 

21 -= ^}
L(r/t,e;v)o?y

]{(r/0' = v;6' = ir,u)dv, (3.1 
JO u A 

6) 

^/(r/t,6;u) = 0, (3.17) 

and the stresses for the Green's function are then 

a%{r/t, 6;u) = o§ (r/t,6;u) + o°j(rlt,~d;u) 

~4f(r/f,d;u). (3.18) 

obviously, very little extra work is required to calculate the 
bifurcation case once the kinked crack case has been solved. 
Since the displacements are antisymmetric about the x-axis, 
only the half plane z > 0 need be considered; that is, only one 
integral equation is required. 

4 Numerical Procedure and Results 

The superposition calculation and the evaluation of aD and 
a_PL were performed numerically. Gaussian integration was 
used (see [22] for computer programs used). To obtain suf
ficient accuracy when the point where the stresses had to be 
evaluated was close to the original crack tip, the integrations 
for aD, afL were performed as follows: if r/t<0Ac, the range 
of integration was split up into ranges from rlt to /7/ + 0.1c 
and rlt + 0.1c to c; otherwise a single range from rlt to c was 
used. For the superposition where the range of v was from 0 
to c, two ranges were used; 0 to 0.1c and 0.1c to c. In each 
range the appropriate end conditions were used. From 
convergence tests, 25 integration points were found to give 
satisfactory results. 

The Cauchy singular integral equation was solved using 
either the method given in [17] with the modification to obtain 
the stress-intensity factor given by Krenk [23] or by the 
method suggested in [20]. Either method gave sufficiently 
accurate results using 11 collocation points. However care had 
to be taken when the modified method in [20] was used for 
vCT<0Ac. 

For loading case (1) the boundary and initial conditions are 
the same as for the point load problem with equation (3.6) 
replaced by 

a^ds(x<0,z = 0) = T0H(t). (4.1) 

The relevant stresses are 

<4oads(/V?,6l)= T° 
itb Vi 

' "r 3 (X) dA 
Im\ "-^- d(T/r) + r0H(t-bz)H(-x), (4.2) 

>(T ) 
and 

oL™ds(r/t,6) 

Trbv' 
Im r ir i ax 

0-(X) 

( T ) 

d(r/r). 

a -

For case (2) 

<4oads (rlt,6 = 0) = T0H(vt-x). 

(4.3) 

(4.4) 

The stress-intensity factor for loading cases (1-3) for 
0<5<7r /2and y c r / c = 0.1, 0.3, 0.5, 0.7, are shown in Fig. 3 
for the kinked crack and in Fig. 4 for the bifurcated crack. To 
check the accuracy of the program the results for the bifur
cated crack with 5 = 0, 7r/2 with loading case (1) were com
pared with the analytical results in [11] and were found to be 
within 2 percent. For vCT< 0.1c, the number of integration 
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points has to be increased before sufficiently accurate results 
can be obtained. 

For all graphs the stress-intensity factor has been nor
malized with respect to. the longitudinal wave speed of the 
material, cL. A Poisson's ratio of P = 0 .25 was used which 
gives c = cL/Vf3\ The results were not normalized with respect 
to c since this work was used to gain experience before at
tempting the Mode I problem. To obtain the more usual 
normalization with respect to c, the results need only be 
multiplied by 3 I / 4 . 

The near coincidence of the results for loading case (2) and 
velocities i>pr = 0.3c and 0.7c can probably be explained as 
follows. The stress-intensity factor depends very strongly on 
a^pads along the kinked crack line near the crack tip. For 
loading case (2) o~>ads near the crack tip is the same for all 
values of 8, which would explain why the change in Km is 
small over the whole range of 5. As the velocity of the kinked 
crack increases from zero, the total force due to the loading 
gets greater, causing a tendency for Klu to increase as vCT 

increases. However, as vCT approaches c, the ability of the 
crack tip to act as an energy sink diminishes. This can be seen 
by looking at the asymptotic field about the crack as vCT^c 
and observing that the square-root singular term in stresses is 
invalid when vCT = c. That is, when vCT = c, the stress-
intensity factor will be zero. Therefore, it is reasonable to 
assume Km will decrease as vCT —• c for vCT close enough to c. 
The trade off in these two effects is believed to be the reason 
for the near coincidence in Km for t i c r = 0.3c and 0.7c for 
loading case (2), together with the observation of the 
dependence of Km on 8 through o^°ttds. 

Loading case (4) can be considered as the sum of two 
problems. One part is a plane stress wave of constant 
magnitude that propagates in an infinite body. The direction 
of propagation of this wave is 6=ir/2 + a, where is a con
sidered only for 0 < a < TT/2. At time / = 0 the wave reaches the 
origin. The second part consists of the stress field due to 
loading the faces of a semi-infinite crack so that when the two 
parts are added together, the stress field for the reflection and 
diffraction of a plane stress wave by a semi-infinite crack is 
obtained. The stress due to this field along 6=8 is used as 

(r/t,8 = 0). 

(4.5) 

(4.6) 

T-Loads 

The boundary conditions for the second part are 

azy(x<0)= - T0cosocH(ct + sinax)H(t) ,z = 0, 

w(*>0) = 0, z = 0. 

The stress field due to both parts is given by 

a^ds(r/t,d>0) 

T0cosa r"r 0 + ( \ ) a x . . . . . . 
Im\ - — H(T-br)d(r/r) irbVl(l +sina) , / ' " " Jft \-bsma 

- rQcosaH(t — b z cosa + bx sina) 

and 

a^ds(r/t,d>0) 

— T0COSa 

sina) - 1 

(4.7) 

iYbVl(l + s i n a ) 

X d\ 

/3_(X)(X-feina) r 
T0smoiH(t — bcosaz + bsinax) \H( 

H{T-br)d(T/r) 

, ) - (4.8) 

The stress-intensity factors for loading case (4) and the 
kinked crack case are shown in Fig. 5 for t>C7-/c = 0.1 and 0.5, 
CK = 0, TT/8, TT/4, 3TT/8, and TT/2 and 0<5<TT/2. 

VCT /C = 0.1 

. . . . . V C T /C = 0.3 

. V C T /C = 0.5 

. _ V C T /C = 0.7 

+ Case 1 

• Case 2 

x Case 3 

0.5 0.2 0.3 

6/TC 

Fig. 3 Stress-intensity factor Km for the kinked crack versus Wir for 
vCT/c = 0.1, 0.3,0.5, 0.7, and loading cases 1 -3 

v C T / c = o . i 

<N CD 

Fig. 4 Stress-Intensity factor Km for the bifurcated crack versus 6h 
for VCT/C = 0.1, 0.3,0.5, 0.7, and loading cases 1 -3 

5 Conclusions 

The results in Fig. 4 for loading case (1) are plotted in a 
different format in Fig. 6, i.e., holding 5 fixed, Km is plotted 
against vCT/c. Although it could not be shown analytically for 
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arbitrary 5, it was shown in [11] that as vCT-~0, for 5 = 0, 7r/2, 
Km (for the bifurcated crack case) was equal for the loading 
case (1). If the numerical results are extrapolated back from 
y c r = 0.1c to yCT = 0, they strongly suggest that Km 

(8,vCT—0) is a constant for loading case (1) for arbitrary 
5<7r/2 and VCT~~0. Figure 6 has been plotted enforcing Km 

(8;vCT = 0)=Kw (5 = 0,7r/2;yC7- = 0) = 0.865T0(c i0' / l-
With this assumption it is clear that for any velocity at 

which the bifurcation crack tips initiate, Km is larger for 
larger 5. This implies that if a critical stress-intensity factor is 
used as a fracture initiation criterion for loading case (1), the 
bifurcation cracks will immediately propagate out of plane. 
The stress-intensity factors are also monotonically decreasing 
functions of VQT for this loading case. However, since Klu 

behaves as t'A for these problems it is not possible to consider 
the behavior of continued crack growth for a fracture 
criterion of the form dynamic energy-release rate equal a 
constant. 

From Fig. 4, it is seen that, for stress-wave loading case (3) 
with the bifurcation geometry, there is apeak mKm/( T0 tVl) 
occurring, for each bifurcation crack speed, in the range 
8= 7r/8-5= 7T/4. This would imply bifurcation will occur with 
8 in this range, if, again, critical stress-intensity factor is used 
as an initiation of crack growth criterion. Also, since for 
vCT/c—0 Km for loading case (2) is zero, and if the 
foregoing assumption is used for Km as yC7-/c—0 with 
loading case (1), A:m (8,vCT/c~0) = 0.865 TQ(cLt)'A- for 
loading case (3) as well. From Fig. 4 it can be seen that only 
for crack-tip velocities near vCT/c = 0A, is Klu greater than 
the stress-intensity factor for vCT/c = 0. We can therefore 
conclude that, at initiation, the original crack, if it bifurcates 
as modeled in the foregoing, will do so with 5 approximately 
in the range Tr/8-ir/4 and with vCT/c small; that is vCT/c is 
greater than zero and approximately equal to 0.1. 

It is interesting to note that in [16], it was concluded that 
for initiation of a Mode I problem, the crack-tip speed must 
be also in this range. The reasons for this are completely 
different however. 

The behavior of Klu for the kinked crack, under loading 
case (3) which corresponds to the stress-wave loading con
sidered in [12] when the original stress wave is parallel to the 
semi-infinite crack, is very different to that given in [12]. 
Although it was not pointed out in [11], the problems in [10] 
mentioned in [11] also apply directly to [12]. Unfortunately, 
due to the lack of symmetry in the kinked crack case, no 
analytical results can be obtained for 8^0. However, since the 
numerical results were shown to be correct for the bifurcation 
case for 5 = 0, 7r/2 and the same program with only minor 
modifications was used for the kinked crack case, the results 
for this case are considered to be of the same accuracy. It is 
also noted that the results follow the trend one might expect 
physically from considering the static case as 5 is increased. 
The results of Aboudi [24] who considered the skew crack case 
with loading case (3) and 5= 7r/4 also do not agree with [12]. 

In the stress-wave loading case (3) Kul decreases as 5 in
creases and therefore we would expect the crack to propagate 
straight ahead. If the crack had kinked along 9= - 6 instead 
of along 6 = 8 the stress-intensity factor for the former case 
would be the same as for the latter case, provided 0<5<7r/2. 
In Fig. 5, the effect of different values of a is shown. For 
fixed a and VCT> Klu/(T0t'

A) n a s a maximum at increasing 
values of 5 for a increasing. This implies that the crack will 
tend to kink for sufficiently large values of a and in fact for 
a=ir/2 the kink angle 5 would most likely be ir/2. This 
follows intuition obtained from the static case in that the 
stress-intensity factor is close to a maximum along the line 
which has the largest tractions acting across it. 

It has already been pointed out that these models cannot be 
used to model problems where the dynamic energy release rate 
is assumed to be constant. However, it is frequently observed 

a = 0 

a = rc/8 

a = rc/4 

a = 3rc/8 

a = rc/2 

+ VCT/C =0.1 
« VCT/C =0.5 

Fig. 5 Stress-intensity factor Km for the kinked crack versus S/ir for 
alir = 0,1/8,1/4, 3/8,1/2, and vCTlc = 0.1, 0.5 for loading case 4 
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Fig. 6 Stress-intensity factor Km for bifurcated crack versus vCTlc for 
different 5 and loading case 1 

that cracks propagate at a constant velocity which is 
significantly less than the shear wave speed. This might in
dicate that a linear elastic model does not account for the 
dissipative effects occurring in the fracture process zone. 
Therefore, a fracture criterion such as constant dynamic 
energy release rate, when this quantity is calculated only from 
a linear elastic analysis, may in fact not be a reasonable 
fracture criterion if the material is not extremely brittle. 
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Although it is not immediately obvious from Fig. 4, the 
stress-intensity factor for loading case (1) has a minimum, 
which for the higher crack-tip velocities, is not at 5 = 0. The 
effect is very slight but increases for increasing yCT. For 
DC7-/C = 0 . 3 , the minimum appears to be at 5 = 0 whereas for 
y c r / c = 0.7 it is approximately at 5 = 5 deg and is about 5 
percent less than Km (5 = 0, vCT/c = Q.l). For uCT/c = 0.5 the 
minimum appears to be around 5 = 5 deg and the effect is only 
about 2 percent. The calculations have been shown to be 
within 2 percent accuracy for two particular choices of 5 but 
the preceding feature is so small that it is not certain that this 
feature is not at least in part numerical inaccuracy. In plotting 
all the other graphs the effect was ignored since at the scale 
plotted it could barely have been seen. 
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A Further Examination on the 
Application of the Strain Energy 
Density Theory to the Angled 
Crack Problem 
The strain energy density theory (the S-theory) has been examined. Two points that 
may lead to confusion have been discussed when the S-theory is employed in the 
study of the angled crack problem. Predictions for the biaxial tension configuration 
based on the S-theory compared with one based on the maximum strain criterion are 
presented. Use of the ratio of core region radius as a material parameter in the S-
theory is also questioned. 

Introduction 

Explanation for the failure of solids containing cracks has 
been an interesting and challenging subject for investigators in 
the field of fracture mechanics. In 1963, Erdogan and Sih [1] 
pioneered the study of the initial crack extension of a brittle 
plate containing a centrally located, small inclined crack 
under uniform uniaxial tension. This study, which was later 
referred to as "the angled crack problem" by Williams and 
Ewing [2], has since been extensively investigated by 
researchers in the field of fracture mechanics. 

The configuration of the angled crack problem is shown in 
Fig. 1. In this problem, an isotropic, homogeneous, linearly 
elastic plate containing a small, inclined, traction-free sharp 
crack or elliptic crack, in its center, is subjected to a uniformly 
distributed edge load. The load at which new crack surfaces 
are created, or the fracture strength, and the direction of the 
initial crack extension are subjects of interest. The inclined 
"crack angle," /3, an independent variable in the study, is 
measured positive clockwise from the main loading axis, 0-0', 
to the major axis of the elliptic crack (the .xr-axis); the 
"fracture angle," 60, a result of interest in the study, is 
measured positive counterclockwise from the major axis of 
the elliptic crack to the direction of the initial crack extension. 
The ratio of the two perpendicular edge loads (X) may be 
either positive or negative. 

Both experimental and theoretical work abound on this 
subject. Experimental work [1-13] include tests on various 
materials such as PMMA, glass, and toluene swollen 
polyurethane under uniaxial tension, uniaxial compression 
and pure shear edge stresses. Some of the experimental work 
[10, 11] applied loads on plates containing an elliptic crack 
(the elliptic model) and others [1-9, 13] loaded plates with a 
sharp slit crack (the slit model). Theoretical work [1-39] 
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Fig. 1 The configuration of the angled crack problem 

include various criteria and approaches proposed to the study 
of the problem. Among proposed theoretical approaches only 
the strain energy density theory (the S-theory) proposed by Sih 
[16-22] and the modified maximum stress criterion and the 
maximum strain criterion by Chang [35, 36] have been em
ployed to study both elliptic and slit model versions of the 
problem, utilizing exact stress solutions. 

The subject of the present work is to examine the ap
plication of the S-theory to the study of the angled crack 
problem. Detailed calculations have been carried out and 
analyzed using exact stress solutions. It is noted that some 
problems may arise in many of loading configurations when 
the S-theory is employed to predict the fracture angles (0O in 
Fig. 1). Discussion of these problems will be presented first. 
The correlation between existing experimental data and 
analytical results based on the S-theory for some particular 
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loading configurations will be presented next. Finally, 
predictions for biaxial tension conditions, utilizing the S-
theory, will be presented and compared with the 
corresponding predictions of the maximum strain criterion. 

The Strain Energy Density Theory and the Maximum 
Strain Criterion 

When applied to the angled crack problem, the strain 
energy density theory by Sih [16-22] may be stated as follows: 

a Crack extension starts from the location of the maximum 
surface tension, point M in Fig. 2(a), along a ray 8 = 80, at 
which the strain energy density factor, S(9), of the stress 
elements on a circular arc (the core region) of (small) radius rQ 

from point M, reaches a stationary (relative minimum) value. 

b Fracture is imminent when the relative minimum strain 
energy density factor, S(60), at the distance rQ from point M, 
reaches a critical critical value, Sc, Here 0O is such that: 

dS 

V / ff 
-w/^ 'r 

and 

38 

32S 

= 0 

>0 

(la) 

(lb) 

are satisfied. The core region radius, /•„, and the critical strain 
energy density factor, Sc, are assumed to be material con
stants; the strain energy density factor, S, is defined by Sih 
[21] as 

/ dW \ rQ , 
s = ' H ^ 4 - ) = iti [ (1+K)(f f?'+a22) 

-2(3-K)a„ff2 2+8o]2] (2) 

where K is defined to be 3-4v for plane strain and (3 - v)/(\ + v) 
for plane stress, ^ is the shear modulus, and v is Poisson's 
ratio. 

On the other hand, the maximum strain criterion proposed 
by Chang [36] for this problem may be stated as follows: 

a Crack extension starts from the location of the maximum 
surface tangential strain, point Min Fig. 2(a), along a ray 6 = 
80, at which the circumferential strain, eg, of the macro
elements on a circular arc of a (small) radius r0 from Point M, 
reaches a maximum value (absolute maximum) with respect to 

b Fracture is imminent when the maximum strain, eg(60), 
at the distance r0 from Point M, reaches a critical value, eT. 
Both r0 and eT are assumed to be material parameters. 

Referring to Figs. 1 and 2, where the plate is loaded under 
uniform stresses a and \a, it is noted that the location of the 
maximum tangential strain along the traction-free crack 
surface is in fact coincident with that of the maximum 
tangential stress. Thus, the starting points of crack extension, 
M, and the arc of the core region proposed in the foregoing 
two criteria are the same. 

In the present analyses, all stress components are calculated 
based on the exact elastic stress solutions of an infinitive plate 
under the loading configuration shown in Fig. 1. Expressed in 
elliptic coordinates, shown in Fig. 2(b), these solutions, which 
can be obtained by employing Muskhelishvili's [40] complex 
potentials, have been expressed in references [34-36], and will 
not be repeated in the present work. The corresponding strain 
components may be enumerated by use of Hooke's Law once 
the stresses are calculated. For the slit model, £0 = 0.0 is 
used. 

All numerical values for the fracture measures, S (8) and 

CRACK SURFACE 

( . -2c -*| 
£ ^ CONST, 

Fig. 2 (a) The care region and its stress element; (b) the elliptic 
coorrdinates and the stress element 

e0(8), are obtained by using a unit applied stress, a = + 1 for 
tensile and a = - 1 for compressive cases. This simplification 
does not affect the predictions utilizing the foregoing two 
criteria because the values of S(8) and ee(6) are directly 
proportional to a2 and a, respectively. The material constants 
used are E = 2(1 + v)ji, = 4.5 X 105 psi, which represents the 
elastic modulus of PMMA [41], where v may vary between 
0.0-0.5, and /J. varies accordingly. 

For a slit model, the center of the core region, point M in 
Fig. 2, is chosen at the tip of the crack because of its stress 
singularity nature. For an elliptic model, along the crack 
surface, £ = ij0, the location of the maximum surface tension, 
(£o> VM)* i-e-> point M i n Fig. 2, is calculated numerically to 
the accuracy of 17M within ± 3 x 10 "6 rad using the exact 
stress solutions. 

Dilemmas Arising From the Application of the 5-
Theory 

Two dilemmas that can lead to uncertainty arise when the 
S-theory is employed to predict the fracture angle (80) for the 
angled crack problem. These dilemmas are discussed in this 
section. 

A Ambiguity in the Choice of the Relative Minimum 
S(8). The S-theory would be clear if there were only one 
relative minimum value of S(6) along the arc of the core 
region for all loading configurations. However, calculations 
reveal that there exist two or more relative minimum values of 
S(8) along the arc of the core region for most loading con
figurations. This implies that one more restriction is required 
to help determine which of these relative minima governs the 
occurrence of crack extension. 

The aforementioned situation has been discussed by 
Swedlow [39]. In reference [39], Swedlow has pointed out 
that, for many loading configurations, the choice of the 
global, i.e., the smallest, relative minimum of S(8), which 
corresponds to a global relative maximum of potential energy, 
leads to a wrong prediction on the fracture angle, 80. 
Alternatively, it seems to be reasonable to assume that the 
largest of the relative minima of S(8) governs the crack ex
tension. Because, as defined in equation (2), S is proportional 
to the square of the externally applied stress, a; thus, as a 
increases, the value of S(8) along the core region increases 
accordingly, and the largest relative minimum S(d) will 
always reach its critical value, Scr, first, which leaves no 
chance for other relative minima to reach Scr. However, if this 
assumption is followed, the S-theory will also lead to wrong 
prediction on the fracture angle under certain loading con
figurations. 

In reference [39], Swedlow has further suggested that the S-
theory be used in conjunction with a corollary that the critical 
minimum S(8) must be associated with a tensile hoop stress, 
ae > 0. This corollary is confirmed for most loading con
figurations; however, there still are cases that do not follow its 
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Fig. 3 Analytical results for S and a(, along the arc of the core region 
as functions of 0 for the uniaxial compressive case with bla = 0.0, r0'a 
= 0.01, v = 0.25, and 0 = 89 deg. (a) Strain-energy-density factor, S, 
and (b) tangential stress, ae. 
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Fig. 4 Analytical results for S, dSlcll), and <re along the arc of the core 
region as functions of 0 for the uniaxial tensile case with bla = 0.2, r0la 
= 0.15, v = 0.25, and /S = 10 deg 

statements exactly. Figures 3 and 4 show the analytical results 
for two particular cases for which use of Swedlow's [39] 
corollary will lead to no conclusive predictions for the 
fracture angle, d0. 

Figure 3 shows the S — d and oe - 6 curves for a slit model 
under uniaxial compressive load with r0/a = 0.01, v = 0.25, 
and /3 = 89 deg. It is seen that three relative minima for S(d) 
exist, and two of them are associated with a tensile hoop 
stress. Figure 4 shows the S—d, dS/dd — 6, and ae — 6 curves 
for an elliptic model under uniaxial tension, with b/a = 0.2, 
r0/a = 0.15, v = 0.25, and /3 = 10 deg. It is seen that for 
these loading configurations there exist only one relative 
minimum of 5(0 which corresponds to a compressive hoop 
stress as shown. It is clear that the corollary proposed by 
Swedlow [39] does not lead to a definite conclusion on the 
fracture angle prediction for these particular loading con
figurations. 

B Nonexistence of the Relative Minimum S(Q) Along the 
Arc of the Core Region. There are cases when the values of 
S(ff) along the arc of the core region possess no relative 
minimum for all 8 values in the 6 domain. In such cases, the S-
theory leads to no conclusion to the fracture angle prediction. 
Such a problem does not exist if the maximum strain, e„, is 
employed to govern the fracture occurrence. 

Two typical cases that possess such a dilemma when the S-
theory is employed are hereby discussed. Figures 5 and 6 
represent the S-6, dS/dd - 6, and/or d2S/d62 - 6 curves 
along the core regions for the biaxial tension cases of an 
elliptic model with b/a = 0.1, X = 8, and r0/a = 0.01, and a 
slit model with X = 0.25 and r0/a = 0.01, respectively. In 
Fig. 5 it shows that for (3 angle between 72-84 deg, the first 
derivative, dSIdd, remain positive throughout the 6 domains. 
This reveals that there exists no relative minimum S(6) for 
these particular configurations. Such a phenomenon can also 
be observed, although in different form, for the slit model 
shown in Fig. 6. In Fig. 6, it is seen that when (3 equals 0 ,1 , 
and 2 deg, the second derivative in the neighborhood of the 
peak of each curve, which is the only location that satisfies 
dS/dd = 0, are clearly negative indicating no possible shallow 

— 1 ) fr-

f > . 0? 

15'\/ 
30'\// 

45. PjL 
6Q~-^£rJi 

rj/15. ' 

—.,.. . .t 

. 

H !H 

li-135-90.-45.0. 45. 90. 135.181 
6° 

(a ) 

-lBOrl35v90.-U5.0. 45. 90. 135.180. 

(b) 

( c ) 
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Fig. 5 Analytical results for S, <(), and dSldll along the arc of core 
region as functions of 6 for the biaxial tension case with bla = 0.1, r0la 
= 0.01, \ = 8.0, and v = 0.25. (a) Strain-energy-density factor, S, for 0 
deg < 3 < 90 deg; (b) tangential strain, ie, for 0 deg < 3 < 90 deg; (c) 
strain-energy-density factor, S, for /3 = 72, 76, 80, and 84 deg; (d) first 
derivative, dS/dfl, for /3 = 72, 76,80, and 84 deg. 

unseenable relative minimum to exist. In obtaining Figs. 5 and 
6 all calculations are based on exact stress solutions and chain 
rule of differentiation, the numerical differentiation formula 
has not been used. 

Journal of Applied Mechanics JUNE 1982, Vol. 49/379 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



-1B0. -135. -90 . -»1S. 0. I|S. 90. 135. 180. 

Fig. 6 Analytical results tor S, dSldS, and d2Sld»2 along the arc of 
core region as functions of 9, for the biaxial tension case with bla = 0.0, 
r0la = 0.01, \ = 0.25, and >- = 0.25 

Figures 7(a) and (b) show the S - 6 and ee - 6 curves for a 
biaxially loaded elliptic model with bla = 0.1, r0/a = 0.01, a 
= l , a n d X = - 2 . 0 . It reveals that the shape of the S(8) curve 
changes irregularly as /3 varies from 0-90 deg, and the first 
dilemma discussed in the foregoing occurs when f3 is close to 
41 and 86 deg. On the other hand, the shape of the ee(6) 
curves, as shown in Figs. 5(b) and 1(b) has a regular trend 
with distinctive absolute maxima as |3 varies. 

In Figs. 5 and 7, it is noted that the 6 domain of the 
presented curves do not cover the entire region of ( - i r , ir). 
This is expected because of the definition of the core region 
for an elliptic model, as can be illustrated in Fig. 2(a). 

It is further noted that the fracture angle predictions 
presented in Fig. 16 of reference [21] have no values for 80, 
when /3 is small, for cases such as r0/a = 0.03, 0.05, and 0.1. 
It is believed that this phenomenon is mainly caused by the 
aforementioned dilemmas. 

In the presentation that follows, curves representing 
predictions based on the S-theory will be cut off if there is no 
relative minimum S(6) or if the relative minimum causes a 
discontinuity in the 60 - (3 prediction, or the prediction will be 
shown by a dotted line if a compensatory decision, choosing a 
relative minimum S(6) other than the largest, will keep the 
60 - j3 prediction a smooth curve. 

Predictions of Experimental Data 

Despite the foregoing two dilemmas, the S-theory can still 
predict results comparable to those of the experimental data 
[21, 22] if one is flexible in choosing the relative minimum 
S(6), and sometimes ignores the transition (3 range where the 
corresponding relative minimum S(d) disappears. 

Sih and coworkers [16-22] have applied S-theory to the 
uniaxial tension case of the slit model [22] and the uniaxial 
compression case of the elliptic model [21], and the resulting 
predictions have been compared with existing experimental 
data. However, no such exercise has been undertaken for 
other loading configurations where data are available, such as 
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Fig. 7 Analytical results for S and te along the arc of the core region 
as functions of 0, for the biaxial loading case with bla = 0.1, r0la = 
0.01, v = 0.25, X = - 2 , and a = 1. (a) Strain-energy-density factor, S; 
and (b) tangential strain, ie. 

Present Analysis (the S-Theory] 

° Eaperinemal Data ( 9 ] . 

Fig. 8 Theoretical predictions for the shear loading case of the slit 
model compared with existing experimental data, (a) Fracture angle; 
and (b) fracture strength. 

the slit model under shearing stress [9, 13] and the elliptic 
model under uniaxial tension [11]. In this section, results of 
such a study are presented and discussed. 

A The Slit Model Under Inplane Shear. Experiments of 
this particular case have been performed by Ewing and 
Williams [9], and Liu [13]. Analyses of the fracture angle for 
the case of inplane shear employing the S-theory have been 
discussed by Sih and MacDonald [17] and Sih [18]. However, 
only reference [18] has presented a quantitative prediction for 
the case of "Mode II Crack Extension" using a singular-term 
eigenfunction stress solution. For prediction of the general 
inplane shear case with varying /3 angle, analysis on the case 
of X = - 1 with 45 deg < /3 < 90 deg, which has been shown 
[34] to be identical to the inplane shear case, is employed in 
the present study. Reasonable agreement between S-theory 
predictions and experimental data [9, 13] are obtained for 
both the fracture angle and the fracture strength, as shown in 
Figs. 8(a) and 8(b), respecti/ely. In obtaining predictions 
given in Figs. 8(a) and 8(b), bla = 0.0, ra/a = 0.01, and v = 
0.20, 0.30, and 0.40, have been used and no compensatory 
decision had to be made. 

B The Elliptic Model Under Uniaxial Tension. Wu, et al. 
[11] have presented experimental data for this particular case 
using PMMA plates (v ~ 0.35) containing an elliptic crack of 
bla = 0.2. Figures 9(a) and 9(b) show the predictions based 
on S-theory for the fracture angle, 60, and the strength, acr, as 
functions of (3, together with the experimental data of 
reference [11]. In Figs. 9(a) and 9(b) , bla = 0.2 and r0la = 
0.15, and u = 0.2, 0.25, 0.3, 0.35, and 0.4 have been used. 
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Fig. 9 Theoretical predictions for the uniaxial tension case of the 
elliptic model compared with existing experimental data, (a) Fracture 
angle; and (b) fracture strength. 

For small angles of (3 between 6-15 deg, no curves are 
presented because of the dilemmas mentioned in the 
foregoing. It is seen that when r0/a is chosen as 0.15, S-theory 
provides a fair correlation with respect to Wu et al.'s [11] 
experimental data on 60-fi variations for 13 > 15 deg. 
However, the corresponding strength predictions are not close 
to the experimental data. 

C Justification of the Ratio of Core Region Radius, r0/a, 
as a Material Parameter. In reference [22], Sih has used r0/a 
= 0.005 and 0.02 to obtain predictions on 80 versus /3 which 
agree well with the experimental data obtained by Williams 
and Ewing [2]. In the present work, it has been shown that 
r0/a = 0.01 in Fig. 8 andr 0 / a = 0.15 in Fig. 9 have to be used 
to provide reasonable predictions to the experimental data 
obtained by Ewing and Williams [9] and Wu et al. [11], 
respectively. In references [2, 9, 11], all tests use the same 
material, PMMA, but in order to obtain reasonable 
predictions of the fracture angle for all cases, the S-theory has 
to choose r0/a of magnitudes (from 0.005-0.15) that differ 
considerably from each other. This implies that the ratio of 
core region radius, r0/a, can hardly be justified as a material 
parameter in the S-theory. 

Biaxial Tension Configuration 

Application of the S-theory under biaxial loading con
ditions has not been discussed in the literature. The present 
section compares S-theory predictions under biaxial tension 
with those based on the maximum strain criterion proposed 
by Chang [36]. 

Fracture angle prediction under uniaxial loading is very 
much sensitive to the values chosen for the core region radius, 
r0/a, when the S-theory is applied to the elliptic model, as 
illustrated by Sih in Figs. 16 and 21 of reference [21], but not 
so sensitive when applied to the slit model (see Fig. 14 of 
reference [21]). A similar tendency is also true when it is 
applied to biaxial loading cases. 

Figures 10(a) and 10(b) show, respectively, the fracture 
angle and the fracture strength predictions based on both the 
S-theory and the maximum strain criterion for a slit model 
under biaxial tension. To obtain S-theory predictions shown 
in Figs. 10(a) and (b), we have restricted that d0 < 0 for 
cases X = 0, 0.5, 0.8, - 1, and - 10 and that 6Q > 0 for cases 
X = 1.25, 2.0, and 10, to avoid the first dilemma. It is seen 
that for a slit model under biaxial tension, fracture angle 
predictions based on the two theories are pretty close when X 
is negative; and their fracture strength predictions have 
similar trends although their values differ significantly. 

For the case of X = 1, the same stress is applied in all 
directions at the edge of the plate; therefore, the stress state in 
terms of (£, -q) is the same for all values of /3, i.e., independent 
of /3, thus the fracture angle as well as the fracture strength 
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Fig. 10 Theoretical results employing both the S-theory and the 
maximum strain criterion for biaxial tension cases of the slit model 
with r0la = 0.01, c = 0.25, and A from - 1 0 to +10. (a) Fracture angle; 
and (b) fracture strength 
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Fig. 11 Theoretical results employing both the S-theory and the 
maximum strain criterion for biaxial tension cases of the elliptic model 
with bla = 0.1, r0a = 0.15, v = 0.25, and A from - 1 0 to +10. (a) 
Fracture angle; and (b) fracture strength. 

must be the same for all values of /3, as shown in Figs. 10(a) 
and (b). In Fig. 10(6), the strength values have been divided 
by the strength values obtained for the case of X = 1. 

In obtaining predictions for an elliptic model under biaxial 
tension utilizing the S-theory, we found a strong sensitivity to 
the r0/a value. In the following discussion, bla = 0.1 and v = 
0.25 are considered. Figures 11(a) and 11(b) show the 
predictions based on the S-theory as well as the maximum 
strain criterion using r0/a = 0.15. It is seen that with such a 
relatively large r0/a ratio, the S-theory predicts fracture 
angles that are comparable to and fracture strength that has 
similar trends to the corresponding predictions obtained by 
the maximum strain criterion. However, if r0/a = 0.01 is 
used, the fracture angles predicted by the S-theory for X = 
0.5, 0.8, 1.25, 2.0, and 10.0 are all close to 0 deg or otherwise 
indeterminate; such a tendency can be seen by examing the 
S—6 curves for the case of X = 8 shown in Fig. 5(a). This is 
quite different from predictions obtained by other criteria 
[34-36]. 

Concluding Remarks 

In the present work, the S-theory has been examined. Two 
dilemmas have been discussed. The S-theory is very sensitive 

JUNE 1982, Vol. 49/381 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



to the r0/a ratio when applied to an elliptic model of the 
problem, but not so sensitive when applied to the slit model. 
The justification of the core region radius (>0) to be a material 
parameter in the S-theory. is questioned. The S-theory 
provides predictions that are comparable to those obtained by 
other existing criteria when applied to the slit model and to the 
elliptic model with relatively large r0/a(—0A5) values, but 
not when applied to the elliptic model with small r0/a{ =0.01) 
values. 

From the present theoretical results and from references 
[16, 24-26], it is noted that although the predictions based on 
various criteria [1-36] are close to one another in the uniaxial 
loading cases of the problem, their predictions for biaxial 
loading (X?^0) differ substantially. Therefore, more ex
perimental data for biaxial loading is needed to help identify 
the most realistic criteria. 
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Unconventional Internal Cracks 
Part 2: Method of Generating 
Simple Cracks 
The meaning of the word crack is extended to include holes with cusps of vanishing 
cusp angle. A crack is said to be simple if the associated elasticity problem has a 
closed-form solution. Many classes of simple cracks are constructed and solved in 
this two-part paper. In particular, a method of constructing very sharp cusps is 
described. These cusps possess not only a zero slope {zero cusp angle) but a 
vanishing curvature as well. In fact, a crack may be constructed in such a way that 
the first N derivatives are all zero. 

1 Introduction 

As in Part 1 [1] of this two-part paper, the conventionally 
implied meaning of the word crack is extended to include 
holes with cusps. Moreover, a crack is said to be simple if the 
associated elasticity problem can be explicitly solved to yield a 
closed-form solution. The premise of this two-part paper is 
that any simple crack, however unconventional in appearance 
it may be, is a relevant one in that its explicit solution may be 
useful in many of the fracture-mechanics related parametric 
studies. 

The several classes of cracks discussed in Part 1 were 
constructed by the method of successive mappings by rational 
functions. This procedure will be described in detail in Section 
2. The outcome of the procedure is a composite mapping 
function which is again rational; the idea behind the 
procedure is, of course, to exploit the nice properties of 
rational functions. With the objective of constructing simple 
cracks in mind, however, the family of suitable component 
rational functions is rather small. It includes the mappings of 
straight cracks, circles, ellipses, hypocycloids, hypotrochoidal 
holes, and perhaps a few other cases. Furthermore, when the 
number of poles of a composite function is greater than two, 
even the nice properties of the composite rational function 
become unwieldy. This leads to our device of a second 
procedure which will also be described in Section 2. In this 
latter procedure, a product of the former is expanded with 
respect to one or several of its small parameters and the first 
few terms are retained. The result is very often a polynomial, 
the simplest of all rational functions. This polynomial, 
considered as an offspring of its paternal function, is ob
viously not a new simple mapping if the pertinent parameters 
are restricted to remain small. If, however, the offspring 
polynomial remains holomorphic for much wider ranges of its 
parameters, then it is possible for the offspring to grow out of 
resemblance to its paternal figure. In this way, a simple or 
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nonsimple rational function may be used to generate many 
more simple mappings. Several cases will be discussed in this 
paper. In all these cases the new simple mappings are 
derivatives of " thin" approximations of certain other simple 
mappings. This observation leads to a third procedure which 
will enable us to directly give birth to new simple mappings. A 
class of cracks constructed by this procedure is presented in 
Section 4. The cusps associated with these cracks can be made 
very, very sharp in the sense that the cusp boundary is almost 
the same as a straight line. 

Several classes of the aforementioned mappings have 
hypocycloids as their limits beyond which the mappings cease 
to be holomorphic. For this reason, hypocycloidal cracks are 
first discussed in Section 3. These cracks have been discussed 
in [2, 3] and, in view of their simplicity in the context of 
complex formulation, may have been the subject of in
vestigation of other researcher. The several asymptotic in
terpretations of the exact solution appear to be new and 
useful. 

All the simple mappings discussed here are of the general 
form specified by (21) of [1]. For brevity, we shall use (\-ri) to 
denote equation (n) of [1]. Moreover, most of the symbols 
defined in Part 1 are not redefined in Part 2. 

We are indebted to a reviewer of Part 1 [1] for bringing to 
our attention some closely related results reported in [3-6]. 
These authors are in complete agreement with us in stressing 
the relevance of the roles of cuspidal holes in fracture 
mechanics. In particular, the maximum-stress criterion [7]1 

was applied to hypocycloidal cracks in [3], and a general 
discussion on the geometric properties of cuspidal contours 
was given in [6]. They did not seem to place any particular 
emphasis on generating more exact solutions and the crack 
solutions included in this two-part paper appear not to have 
been studied before. 

2 Unconventional Cracks by Simple Mappings 

Let z { = xx +ix2) be the physical complex plane and f 
(= £ + irj) an auxiliary complex plane. Suppose that C[z;p] is a 

While the maximum-stress criterion is generally credited to the authors of 
[7], neither the criterion nor the reference was mentioned in [3], 
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x - 1 

f ? 
Fig. 1 Successive mappings 

crack in the z-plane, depending on a set of parameters p. The 
crack is assumed to be the image of the unit circle | f |= 1 under 
the transformation 

Z = M(f)=M(f;p). (1) 

The objective of this section is to describe a procedure via 
which many, many simple mappings M(£) may be generated. 
As a matter of our definition, a mapping is said to be simple if 
the elasticity problem associated with the crack has an explicit 
and exact solution. 

Our procedure begins with the introduction of another 
auxiliary complex f * (= £* + /?/*)-plane. Also, the description 
may be best understood by referring to Fig. 1. Let C0[z;p] be a 
crack in the z-plane that may be mapped onto the unit circle 
| f * |= 1 by the inverse of 

z = m*{r) = m*{r.p) (|f •!>!), (2) 

where p is a set of parameters. The image in the f "-plane of a 
cusp-tip located at z = zc is denoted by f * = f *. In the f *-
plane, a second contour/crack C J f ' i p ] , depending on 
several or all of the parameters, is drawn to intersect the unit 
circle | f * |= 1 at f *. The image of C, [f *;p] in the s-plane 
under the mapping (2) is a new crack C, [z;p] which retains the 
cusp characteristics at z = zc. If we assume that C, [f *;p] may 
be mapped onto the unit circle | f |= 1 by the inverse of 

r = /n(0 = m(f;p) ( | r | > l ) , (3) 

thenC,[z;p] is just the image of | f |= 1 under the mapping 

? = F(r) = F(f;p) = W*(m(f;p);p). (4) 

A rather general restriction on the choices of /w*(f *) and /w(£) 
is that F(f) must not lead to a self-intersecting crack 
periphery. The new mapping function F(f) is a hybrid of 
w*(f *) and m(f). If it is already simple in the sense described, 
then a new class of simple cracks has been successfully in
vented. The problems presented in [1] are of this nature. 

The nature of candidates suitable for the roles of w*(f *) 
and m(f) is limited, but the number of possible combinations 
is still quite substantial. Let us restrict our choices of m*(£ *) 
and m(X) to rational functions. Then the composite mapping 
F(X) is also rational. In general, F(£) has poles of different 
orders at many locations and hence is not simple. However, it 
is very often possible to generate simple mapping functions 
from -F(f;p) by retaining only the first few terms of a Taylor's 
expansion of F(f;p) in one or several of its parameters. These 
"offsprings" of Fare, of course, approximate versions of Fif 
the appropriate parameters are restricted to remain in their 
appropriately small ranges. On the other hand, since we have 
no particular interest in F(f;p) to begin with, the restrictions 
on the smallness of the parameters may be lifted so that the 
offsprings themselves may be considered as new classes of 
simple mappings. 

Consider, for example, a function F(X\p^ ,p2) depending on 
two parameters where 0 s pt < 1. The elasticity solution 

associated with the crack CF generated by F is denoted by SF 

(z;p\ ,p2). The function M(£) defined by 

M(t;Pi ,Pi)=F{i-fi,Pl) +p, —Flffljj) 
dp i 

(5) 

(6) 

is an approximation of F for pt < < 1. The associated ap 
proximate solution is just 

d 
SM(z;Pi ,Pi) = SF(z;0,p2) + p , ~— SF(z;0,p2) 

dp i 
which is, once again, valid for/?! < < 1 as far as the crack CF 

is concerned. The function M(f;p, ,p2), however, may itself be 
considered as an independent mapping with a crack CM in the 
2-plane as its image. The exact elasticity solution associated 
with CM is just SM{z\P\,p2)\ Of course, nothing would have 
been gained if p{ were to remain small. It happens very often 
thatM(f) remains holomorphic for 

0</?,</?r(p2) and pt>>0. (7) 

In this range, the crack CM bears very little resemblance to the 
crack CF. We have thus enlarged the family of cracks defined 
by F with very, very little effort. Even if F is not simple, the 
function M may turn out to be simple and the solution SM 

may be directly determined. 

3 Hypocycloidal Cracks 

We begin with the mapping function 

z = Mf) = 
nR0 / 1 1 \ , . 

1 + n \ n f / 
(8) 

1 + n V n V1 

which maps a hypocycloid with n + 1 cusps onto the unit circle 
| f |= 1. The cusps are located at 

z = zc=R0£c-=Roexp 
Ik-K 

~n+\ 
i (£ = 0,1,...,*). (9) 

The few important geometric properties are: 

radius of the circumscribed circle = RQ 

radius of the inscribed circle = r0 = 
1 

n + 1 
Ro, 

perimeter of a hypocycloid = 
8/i 

/T^T ' ' o
: 

area enclosed by a hypocycloid = 

8n 

n + 2 

Ro< 

(10) 
( / j + 1 ) 2 "• 

Since M(f) has a pole of order n at f = f0 =0, the function 
UH defined by (1-34) involves n unknown constants. These 
constants may be determined by examining the properties of 
co(f) defined by (1-35). The stress-intensity factors at Z = RQ 
(f = 1) and the flaw energy U are: 

* i = 

2~JmrR0 

n + 1 

3 « 2 - 3 « + 2 r 3 « z - 3 / 

I 2(n2-n -2) 
»22 
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K,= 

2(n2-n + 2) 

2^/nirRo 2n 

n + 1 

(71 | J («>1) 

ffi2(«>l), 

A\ 
2\lmrRn 

n+ 1 

•n + 2 

^ 3 2 ( 1 S l ) ' , 

(11) 

(12) 

(13) 

-(of, +a2
22-2<711CT22+4fff2)J 

4 ( « + l ) 2 ( « 2 ^ n + 2) ' 

..2 n 2 
<0 

+ 7T-
(rt+1)2 

(14) 

and the term 

Y ( T ) 3 [ T ( < 7 ' 1 + ( 7 2 2 ~ 2 ( 7 I I < 7 2 2 ) ~ < 7 ' 2 ] (15) 

should be added to (14) for n = 3. 
For the special case au = <r22 = a and aX2 = ol3 = CT23 = 0, the 

preceding results reduce to 

2V/i7rfl0 
* , = — ^ a , *V 

t/=-J(^+l)/?g-4, 
4 /?+ . 

•K,=0, 

o2 («>1). 

It is seen that 

A-, 
2 

VTT 
irR0a as « —oo 

(16) 

(17) 

(18) 

which is in complete agreement with the asymptotic ex
pression obtained by Westmann for a pressurized star crack 
[8]2. 

For n sufficiently large, a hypocycloidal hole may be in
terpreted as a circular hole of radius r0, the radius of the 
inscribed circle, with n + 1 equally spaced radial cracks of 
length c and circumferential spacing 2b. It follows from (10) 
that 

c = R0-r0= -/•„, b=^- (19) 
n-1 n+\ 

and hence 

b + c L 1 + 
2 / i+ l 

as n — oo. (20) 
IT « - 1 J 2 + 7T 

The problem of an infinite row of normal edge cracks of crack 
length c and spacing 2b was solved by Benthem and Koiter [9]. 
Their formula may be applied to deduce a very accurate 
estimate for the current problem provided that the remote 
tension in their formula is replaced by the hoop tension 

--Ni-),]-i-£n> 
Using the explicit formula given in [9], we obtain 

K, =aH-JVc8'/2f(S)= 1.468Vircaf — = — ) 
V b IT / 

(21) 

(22)3 

for 5 = 7r/2 + 7r, i.e., n~oo. In terms of c, (18) becomes 

A^VIVrccr ( /J-OO). (23) 

The close agreement between (22) and (23) leads us to believe 
that (18) may be used to approximate (22) by interpreting n as 
the noninteger root of (20). The result is 

In our notation Westmann's result is A'l = (-j2/n+\) •JwRg a. His result, 
however, was normalized by the factor A"j (line crack) = i/2 \JTTRQ a. 

3 f(6) is given by equation (3.149) of [9]. 

Kx = OH^KC?,K= oH^Trc8 — [ ( l + -^ ) ( l + — ) ] ' (24) 

where K was plotted in [9]. Equation (24) is only about 5 
percent off for 0.3 < c/b < 1.0. Alternatively, we may ex
press n in terms of r0 and c, and write 

/c + 2r0\
v' 

Ai = I I S-KCO (many short radial cracks). (25) 
V c + r0 / 

4 Symmetric Variations of a Straight Crack 

We begin with the crack-to-circle and ellipse-to-circle 
transformations 

(l-82)a / 1 5 
z = m*(r) = m*{r\a,8)= 2 ( f * + — + — (26) 

r = m(f) = m(f;S,X) = -A l + X 
f+ 

l - X 1 
- r - 5 i] (27) 

1-5 L 2 V ' l + X f 

where 0 < 5 < 1 and X2 > 1-5. Equation (26) maps the 
crack - lA(2- 5 - 352)a < z < Vi (2 + 5 - 5 2 ) a onto the circle 
| f * |= 1, while (27) maps the ellipse 

[ (^A) /T^] ' + [WT^] ' - ™ 
onto the unit circle | f |= 1. The composite mapping F(f)is 

F(0 = F({;a,S,\) = m*(m({;8,\y,a,5). (29) 

This mapping is already simple in the sense described and the 
associated class of problems was solved in [1]. However, it 
may still be used to generate new and simpler mappings. 

4.1 Symmetric Airfoil Cracks (Special case of (29) studied 
in[l]). 

1 - 82)a 
M(f;fl,5) = F(f;a,5,l)= —~L 

r-i-
L l - 5 

f
 + ' 

> 
<5<1) 

-5 f - 5 
The solution is given by (1 -65)-(l-69). In particular, 

( l+5)a f... . _ 1 MO-^^r-*, 
f f-« 

(30) 

(31) 

where 

On = ( i - a 2 ) 2 

Af, 1 + 2 5 - 5 2 

rS 2 

[ y ( " n -^22) 

"(ff,, + ff22)j - / 5 2 ( l - 5 ) 2 f f i ; (32) 

4.2 Derivatives of Thin Airfoil Cracks. 

M(f;a,5)=F(r;fl,0,l)+ 5 - ^ ( ^ , 0 , 1 ) 
do 

T! d+5)r+ 
1-5 

r 
5 

(0<5<1) (33) 

This is clearly an approximation of (30) for small values of 
5. However, (33) is holomorphic for all values of 5 in the 
range specified. Thus it defines a new class of simple map
pings which is not merely a special case of (30). The exact 
solution associated with (33) is just the first two terms of the 
Taylor expansion of (31). It follows that 

o(l + 5) r 1 
Q / / ( 0 = - i y - [ » ' i f - M ' 1 — f 

1-5 Wx 

T 1 + 6 

5 Wx 

lT5"p~ 
(34) 
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Fig. 2 Symmetric variations of a straight crack: (a) derivatives of thin 
airfoil cracks (0.1 < £ < 1.0 at 0.1); (b) derivatives of thin lip-shaped 
cracks (0.1 s X - 1 s 2.0 at 0.1); (c)one-tip cracks defined by (63)(0.1 < 
e < 1/3 at 0.005); (d) two-tip cracks defined by (72) (0.1 < £ < 2/3 at 0.1) 

All the relevant physical quantities may now be computed by 
the formulas given in [1]. We have 

(Kl,K2,Ki) = J™ (ff22.ff12.ff32), (35) 

^ | ( K + 1 ) ^ ([ 
3 5-

+ -
• 2 S - o 2 

8 8(1 + Sf 
°\i 

3 75 2 -25-3 
+ 1 — + 

L 8 8(1+5)2 >?, + [ 
3 5 2 - 2 6 + l 

4(1+5)2 -7 Jffllff22+ff?2J 

+ IT 
a2{\+S) 

(ff^ + 5^, ) - (36) 

The crack periphery defined by (33) has the parametric 
representation 

>i /a = cos</> -\ cos20 
(0<(/><27r,0<5<l) (37) 

x2/a = 5sin0(l - cos<t>) 

which reduces to 

T-^v-TrO'T)'" <*««>•«> 
For 5 = 1 , (33) reduces to (8), a hypocycloid with three cusps. 
The complete set of cracks is given in Fig. 2a. It is noted that 
for 0 < 1 - 5 < < 1 the crack may be viewed as a curvilinear 
triangle with a short corner crack. 

4.3 Symmetric Lip-Shaped Cracks (Special case of (29) 
studied in [1]). 

M({;a,K)=Ftf;a,0,K) (A>1) (41) 

The exact solution is given by (1-79) - (1-85). 
4.4 Derivatives of Thin Lip-Shaped Cracks. 

oh 

T[ 
X + l „ 2 - X X - l 1 
~^r- f + —z~ + ~ -p] dsX<2). (42) 

This is obviously an approximation of (41) for small values 
of X- 1. It is, however, holomorphic for 1 < X < 2 and hence 
defines a new class of simple mappings. The exact solution 
associated with (42) is just the first two terms of the Taylor 
expansion of the exact solution associated with (41). The 
result is 

OH(0 = 
X + l 

where 
( X - l ) 2 X 2 - l 

S2]0 = — — — w, H —— w, + 
2X(2-X) 

4X 4X X+l 
W, 

X - l 

and 

x+l r TO VA r i o x - x 2 - i 

' ~ ~ 2 L 2 X - l J L 4(X+1) "12 

3(X-1)2 -\y 1 

^ i Y f f l l J ' 

K,= 

4(X+1) 

x+i r 2 \ - n L/ix+i r 2 X - n '-"X+l 

] 
x + i r « ix n 

2 L 2 X - 1 . 

(43) 

(44) 

(45) 

(46) 

(47) 

t/=^(K+l)a2[[~(3-X)(X+l)2+(X-l)3+2]ai2 

+ [ ^ - (5X- 7)(X+ l)2 + (X- l)3 + 2] a2, + [4 + 2(X- l)3 

- y(X+l)3]ff„a22+ y(X+D3ff?2] 

+ ^-(X+l)[3(X-l)af1+(5-X)of2]. (48) 
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The crack periphery associated with (42) has the parametric 
representation 

= cos</>[l-(X-l)sin2</>] 

(0<</><2TT, 1<X<2) ,(49) 

x2 = (X-l)sin3 

which reduces to 

* 2 

a 
± ( X - l ) [ l - ( — ) ] for 0 < X - 1 < < 1 . (50) 

For X = 2, (42) reduces to (8) which maps a hypocycloid with 
four cusps onto the unit circle | f | = l . The complete set of 
cracks is given in Fig. 2(b). It is noted that for 2- X< < 1 the 
crack may be viewed as a curvilinear square with two short 
corner cracks. 

4.5 Cracks with Very Sharp Cusps. The classes of cracks 
defined by (33) and (42) may be considered as generalizations 
of the thin cracks defined by (38) and (50), respectively. It is 
obvious from the latter two equations that the first derivatives 
vanish at the cusp tip (zero cusp angle). This is termed by 
Berezhnitskii as a cusp of first-order tangency in [6] in which a 
method of constructing cracks with two rtth-order tangency 
cusps is described. Our objective here is to further generalize 
the descriptions of (33) and (42) to include cusps of /?th-order 
tangency. Our method is different from that of [6] and our 
results for the two-cusp version are different from those given 
in [6]. This is due to the fact that the order of tangency of the 
cusps does not dictate the shape of the crack in the large. For 
convenience, we shall treat the one-tip and two-tip cases 
separately. 

4.5(a) One-Tip Variations. Let 2a be the "length" of a 
crack and let e be a measure of the gap sustained by the upper 
and lower surfaces of the crack. Our objective is to find a 
simple mapping M($;a,e,N) for a class one-tip cracks such 
that as e—0 the crack periphery is defined by 

* 2 

a 
± £ 

( ' • * ) " ( - * ) " " " <"->- (51) 

It is clear that the first TV-1 derivatives of (51) vanish at 
xx =a. Following (33), we write 

M(f,a,e,N)-- r+ j +e/(f;A0] 

where 

/«w)=2[,4of- X X r n ] , 

(52) 

(53) 

and A„ (n = Q,\,...,N) are real constants to be determined. 
Setting f= e'* in (52) we find 

[
N 

A0sin4>+ Y) A„smnd> \. (54) 
„ = i J 

It follows from the foregoing and (51) that, as e^O, 

N 

A0sm(j)+ 2^ Ansin nct> = sm<f>(l -cos4>)N~[. (55) 

Since sin n<fi/sm<j> is a polynomial of cos</> of degree n - 1, the 
preceding equation yields TV algebraic equations for the N+ 1 
constants A„. One way of obtaining these equations is to 
examine the Taylor expansion of (55) at 0 = 0, and the results 
are 

Ao + E " 2 ' " ~ % , = 0 (m=l ,2 , . . . , /V- l ) , 
n = l 

N 
A0 + T, "2N'lAn=(-^)N'[(^-\)\. 

The remaining equation is the normalizing condition 

A f ( l ) - A / ( - l ) = 2«, 

i.e., 

Ao=T,A„. 

(56) 

(56) 

(57) 

(58) 

The determinants involved in solving (56) are of the Van-
dermonde type [10] and hence the constants may be explicitly 
determined. They are 

1 
(Vi)N-\2N- 1)! JJ (n1 -k2)-1. (59) 

For n = 1, however, (59) is to be interpreted as A0 + A,. 
It remains to be shown that f= 1 is always a root of 

Af'(f) = 0 which may be written as 

fA,-'(f2-l) + 2e^0f
A,+ 1+ T,nA»{N~")=° (60) 

The first of (56) implies that the e-term of (60) vanishes at 
f = 1. More specifically, we may define C„ by the expressions 

Ci=Au c„=nA„+c„-U 

CN=NAN + CN_I = -A0. 

Then (60) becomes 

(f-l)[(l+2^0)(r + r-1) 

+ 2 e £ (cm+A0)t
N-"'-,\=0 

... — I ^ ^ -• 

(61) 

(62) 

We have thus completed the construction of a simple 
polynomial mapping. It is clear that M(f) is holomorphic for e 
sufficiently small. The range of e must be determined by the 
other roots of (62). For N= 3, the mapping is 

; ( l + } e ) f + ( l - e ) - 1 M(f;a,e,3) = 

+ 
2e e 1 

f2 2 f3 

and the crack periphery is given by 

f 

-It (63) 

Xi 

*2 

cos</>+ esin20(cos</)-2) , 

esin0(l -cos0) 2 

(64) 

It is found that (63) remains holomorphic for 0 < e < 1/3 
and for e = 1/3 the crack assumes the shape of an elongated 
three-cusp hypocycloid. The complete set of configurations is 
given in Fig. 2(c). In view of the length of the paper, the 
simple solution associated with (63) is not included here. 

4.5(b) Two-Tip Variations. The objective now is to find a 
simple mapping M(£;a,e,N) for a class of doubly symmetric 
cracks such that as e—0 the crack periphery is given by 
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a 

2 -i (2W-D/2 

! [ ' - (T ) ]' <"»* 
where ./Vis an integer. Following (42), we write 

(64) 

M ( r ; a , e , A 0 = y [ f + - | r + e / ( f ; N ) ] (65) 

where 

r N i 
/(f;yV) = 2L40f- I ] ^ „ r < 2 " - " . 

L , J 

(66) 

The real constants A„ (n = 0,\,...,N) must satisfy the con
ditions 

,v 
Ao + l ] ( 2 / 7 - l ) 2 " ' - U „ = 0 (m=\,2,...,N-~\), (67) 

n = l 

/V 
Ao + L ( 2 « - 1 ) 2 N - U „ = ( - 1 ) / V - ' ( 2 N - 1 ) ! (68) 

N = l 

A0=^An. (69) 
n = l 

The solution is 

1 " 
-4„ = ; , (2N~ 1)! J ! I(2« " I)2 " ( 2 * - l)2] " ' . (70) 

* = 1 
k*n 

Once again (70) is to be interpreted as A0 + A, for « = 1. 
The vanishing of M'(f) implies 

A7 

r 2 < w - " ( f 2 -D + 2 , r / l 0 ^ + £ (2n- lM„r 2 ( "-">l =« (71) 
L n = 1 -' 

where the eterm evaluated at f2 = 1 is just (67). It follows that 
f = ± 1 are two of the roots. We give the explicit results for 
7V=3.Itis 

Mr; •-•-3>-f[('-r)'+('-r)T 
5 1 e l 

— e-

and 
r3 s A 

Ki 3 • , ( 2 , \ 
— = cos0— e — cos^sm^AI 1 cos^tAI , 
a 2 V 3 / 

(72) 

(73) 

y\ = esin50 . 

This mapping remains holomorphic for 0 < e < 2/3 and the 
limit is a flattened four-cusp hypocycloid. The complete set of 

configurations is given in Fig. 2(d). Once again, the simple 
exact solution is not included here. 

5 Remarks 

The idea behind the procedures outlined in Section 2 is very 
straightforward. However, the fact that the simple 
polynomial function can be used to generate so many relevant 
unconventional cracks is somewhat unexpected. Of particular 
importance is the class of corrugated cracks and holes with or 
without internal contact. These configurations are natural 
candidates for studying compressive loads in that the 
associated contact problems can be solved in closed forms. 
This is so because the complication generated by the con
figuration is removed by the fact that the mapping is simple. 
Moreover, the characteristics of the contact zones are the 
same as those of the Hertz problem. In other words, a contact 
zone is simply characterized by two constants, a contact-zone 
size, and a "resultant" contact force. The contact of a figure-
eight hole will be presented in a forthcoming paper. 

The contact near a cusp, however, may not turn out to be so 
simple. This speculation stems from the fact that near a cusp 
of Mh order tangency the periphery is defined by 

y= lxlN + , / ! (AT>1) (74) 

in which x=y = 0 is the cusp tip. The standard Hertz body is 
simply the parabola 

y = x2. (75) 

The most puzzling case is perhaps given by N= 1 for which the 
radius of curvature at x=y = 0 is zero. 
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Eddy Current Flows Around 
Cracks in Thin Plates for 
Nondestructive Testing 
The boundary element method is used to calculate the induced electric current flow 
around cracks in thin conducting plates. A low frequency approximation leads to a 
Poisson equation for the current density potential or stream function. A kernel is 
used which produces the correct singularity at the crack tip. The boundary con
dition on the crack, derived from Faraday's law, requires the line integral of the 
current density around the crack to be zero. Numerical results for induced currents 
due to a circular induction coil ore given. These results show that hot spots, due to 
Joule heating, can occur at the tips of the crack. Comparison of numerical results 
with infrared scanning experiments of eddy currents in a cracked plate are given. It 
is hoped that the numerical method presented here will provide a tool to simulate 
both new and conventional nondestructive eddy current testing techniques. 

Introduction 
Induced electric currents are generated in conductors by 

time varying magnetic fields. When the source of the field is 
outside the body, the induced currents must flow in closed 
paths, hence the designation "eddy currents." In most 
problems eddy currents are unwanted since they are a source 
of heat and energy loss and in some applications can create 
dynamic forces and magnetic pressures. A few applications, 
such as magnetic forming and levitation, have exploited the 
dynamic force producing capability of eddy currents. A third 
interest in eddy currents is their potential for nondestructive 
testing. The presence of flaws or cracks interrupt the natural 
flow of electric current, and the detection of the change of 
electron flow can give a clue to the presence of flaws in solid 
conductors. In fact, a dynamic electromagnetic force tends to 
open up a crack, and, if it is of sufficient magnitude, can 
cause a crack to grow and lead to fracture [1]. This matter can 
be of great concern in the design of fusion reactors. 

The calculation of eddy currents in conductors is generally 
carried out by either using a magnetic or an electric potential. 
A comparison of the two methods is given by Carpenter [2]. 
The electric field or current density potential has the ad
vantage that it need be calculated only in the conductor, 
whereas the magnetic potential must be solved both inside and 
outside the conductor. The latter method, therefore, poses 
potential problems for numerical methods. 

Numerical methods must generally be used for the solution 
of eddy current problems in conductors of complex shape. 
The finite element method (FEM) and the discrete circuit 
element have been used for some years for the solution of 
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these problems. Recently, the boundary element method 
(BEM) (also called the boundary integral equation method) 
has been applied to problems in electromagnetics. Wu et al. 
[3] and Ancelle et al. [4] have addressed magnetostatic 
problems by the BEM while Trowbridge [5] has considered 
magnetostatic problems and eddy current problems by the 
magnetic potential approach. Very recently, Salon and 
Schneider [6] have solved problems of eddy current flow in 
long prismatic conductors by the BEM based on an electric 
potential approach. The boundary element method has the 
important advantage that only the boundary of a body (rather 
than the entire domain) needs to be discretized in a numerical 
solution procedure - thus effectively reducing the dimension 
of a problem by one. However, a full matrix must be treated 
in the BEM whereas the FEM requires operations on sparse 
matrices. 

The direct boundary element approach [3-6] uses a singular 
solution of a differential equation in an infinite domain as a 
kernel in the corresponding integral equation. This direct 
approach can be used in simply connected as well as multiply 
connected domains. However, if a cutout in a conducting 
plate is a crack, numerical difficulties might arise from 
discrete modeling of the crack boundary. This difficulty can 
be overcome if modified kernels are used so that the new 
kernels are the singular solutions of the governing differential 
equations for an infinite region with a crack already present in 
it. This technique has been recently developed for two-
dimensional harmonic and biharmonic operators in con
nection with study of stresses near crack tips in bodies un
dergoing inelastic deformation [7-9]. Use of these modified 
kernels allows the proper boundary conditions to be satisfied 
exactly over the entire crack surface and discretization of the 
crack surface is no longer necessary in a numerical solution 
procedure. The method is thus perfectly suited to the study of 
two-dimensional problems of eddy current flow in cracked 
bodies. 
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The purpose of this paper is the study of eddy currents in 
thin cracked plates with a view toward detection of cracks or 
flaws by nondestructive testing. An analytical formulation 
using an electric potential- is first presented for the deter
mination of eddy currents in a thin flat conducting plate with 
a line crack present in it. The applied magnetic field is 
assumed to be harmonic in time but can have an arbitrary 
spatial distribution inside the plate. This results in Poisson's 
equation for the electric potential. A boundary element 
formulation is next presented using modified kernels for the 
Laplacian operator in two dimensions. 

Numerical results are given for eddy currents in a center-
cracked square plate with the applied field being that due to a 
circular coil. Stream lines are given for various positions of 
the coil relative to the crack. The induced temperature at any 
point in the plate is proportional to the square of the density 
of the induced current at that point. Calculated induced 
temperature profiles are presented for various coil positions. 
An eddy current intensity factor, analogous to a stress in
tensity factor, is defined at a crack tip. Finally, experimental 
results are presented for an infrared isotherm of induced eddy 
currents in a cracked aluminum plate. 

Governing Differential Equations 
A thin, flat uniform plate made of a conducting material is 

considered in this paper (Fig. 1). The plate boundary can be 
arbitrary, its thickness is h, and the conductivity of the plate 
material is a. The plate has a line crack of length c = 2a present 
in it. The crack can have arbitrary orientation relative to the 
outside boundary of the plate. The coordinate system used is 
shown in Fig. 1. The origin of coordinates lies at the center of 
the crack in the midsurface of the plate. 

Consider a current density J, which is induced in the plate 
by an oscillatory magnetic field B° outside the plate. The 
current distribution is assumed to be uniform across the plate 
thickness and oscillatory in nature. The skin depth, which is 
inversely proportional to the square root of the frequency, is 
assumed to be large compared to the plate thickness. Under 
these assumptions no bending occurs in the plate. 

According to Ohm's law 

J = aE (1) 

where E is the electric field (the Hall effect or mag-
netoresistive terms are neglected in Ohm's law). 

For low frequency currents, the continuity condition is 

V^J = 0 (2) 

where V is the gradient operator in two dimensions. Thus, a 
stream function (or electric potential) ^ (x , , x2) can be defined 
such that 

so that 

J= VX (\pk) = - k x V\p 

r _ W r - d* 
dx2 oxx 

(3) 

Using Faraday's law of induction 

dB 
V X E = - — 

dt 
(4) 

d 
3+B\) (5) 

with B the total magnetic field inside the plate and / time, the 
governing differential equation for the stream function is 

dt 

In the foregoing, B\ is the self magnetic field inside the 
plate due to the current J. In general, this field can be ob
tained from the Biot-Sayart law as an integral, over the plate, 
of a kernel times the stream function \p. Equation (5) would 
then become an integro-differential equation for the stream 

Fig. 1 Cracked plate 

function [10]. If, however, the applied field is sinusoidal and 
the resulting skin depth is greater than 10 times the plate 
thickness, the self field term can be neglected relative to the 
applied field B° [11]. Under this assumption, and with 
Bl = B\e"" (where / = v - land co is the oscillation frequency), »3 

the spatial part of the stream function \p satisfies the equation 

V2t = io>aB°j=f(Xl,x2) (6) 

which is a two-dimensional Poisson's equation with a 
prescribed nonhomogeneous term. For simplicity, the same 
notation is used in the following for the amplitudes of the 
various oscillatory functions, as has been used so far for the 
functions themselves. 

Eddy current distributions using a similar electric potential 
approach have been obtained by Salon and Schneider [6]. 
Their formulation is valid for the determination of currents in 
long prismatic conductors and results in a Helmholtz equation 
for the stream function y/. Thus, the work of Schneider and 
Salon is analogous to plane strain problems in mechanics, 
while the present paper addresses conductors in the shape of 
thin plates. This is analogous to plane stress. 

The current must be tangential to the boundary of the plate 
at a point on it. Thus, for a point on either the crack boundary 
dCt or on the outside boundary dC2 (Fig. 1) 

J-n 
ds 

(7) 

where n is an unit normal to the boundary at a point on it and 
s is the distance measured along a boundary in the an
ticlockwise sense. Thus, if y/ is a constant a, on dCx and 
another constant a2 on dC2, equation (7) is satisfied. One of 
these constants can be set to zero without loss of generality 
and the other one is determined by the auxiliary condition 

J-tcfe = 0 (8) 

where t is an unit tangent to dC, at a point on it. Physically, 
this equation implies that the net flux flowing through the 
crack is zero. 

The boundary conditions on \p, in this formulation, are 
therefore 

f = Oon the crack boundary dC\ 

di> 

ds 
= 0 on the outside boundary dC2 

di, 
scx dn 

ds = 0 

(9) 

(10) 

(11) 

Equations (9)-(ll) together with the field equation (6) 
constitute a well-posed problem. 

It should be noted that this formulation assumes that no 
current flows across the crack or crack tip. This formulation 
leads to a current density singularity at the crack tip, as does 
analogous formulations for the stress at a crack tip. 
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Physically it is suspected that there is a finite resistance or 
current leakage across the crack tip which would relieve the 
singularity in actual conductors. However this is not con
sidered in this paper. Instead we will characterize the current 
at the crack tip by a current density intensity factor analogous 
to that in fracture mechanics. 

Boundary Element Formulation 

Integral Equations. An integral equation formulation for 
Poisson's equation (6) can be written as (Fig. 1) 

2TT^(P)- K(p,Q)G(Q) dsQ 

K(p,q)f(q)dAq (12) 

The function G, a source strength function on the outside 
boundary, must be determined from the boundary condition 
on it, equation (10). The points p (or P) and q (or Q) are 
source and field points, respectively, with capital letters 
denoting points on the boundary of the body and lowercase 
letters denoting points inside the body. The area of the body B 
is denoted by A. 

The kernel K(p, q), for a simply connected region, is 
normally chosen to be a singular solution of Laplace's 
equation in appropriate dimensions, e.g., 

K=lnrpq=Re[(j>{z,Zo)] w i t n <t>(z, z0) = ln(z-z0) 

Here rpq is the distance between a source point p and a field 
point q, Re denotes the real part of the complex argument, 
and z and z0 are the source and field points, respectively, in 
complex notation. 

In this problem, however, the kernel must be chosen such 
that it vanishes on the crack boundary dC,. This is achieved 
by augmenting 0 with a second piece 4>* which equals the 
negative of <j> when the source point z lies on 3C, (Fig. 1). 
Furthermore, </>* must satisfy Laplace's equation and be 
regular inside the body B. For an elliptical cutout dC,, </>* is 
derived by making use of the mapping function 

z=utt) = -+mt (13) 

which transforms the region on and outside an ellipse in the z 
plane to a region on and inside an unit circle in the £ plane. 
The parameter m equals (a — b)/(a + b) (with (a + b) =2) in 
terms of the semimajor and minor axies, a and b, respectively, 
of the ellipse. For the line crack in this problem, a is taken to 
be equal to 2 and b is zero. Thus, m equals 1. Using this value 
of m, the augmented function <j> is determined as [7] 

4>(z,z,z0) = ln(l-ri/k)-ln(l-r^) (14) 

where 

z0±^zl-4 
r, = : , I r, ; i ; f = 

z±V? 
I£I<1 

2 ' ' ' ' 2 
and the kernel K in equation (12) is 

K(p,q) = Rel4>{z,z,z0\ (15) 

A superposed bar denotes, as usual, the complex conjugate 
of a complex quantity. 

Use of K from equation (15) in equation (12) satisfies 
equation (9). It has been proved in reference [7] that this 
formulation also satisfies the integral condition (11) on the 
crack surface. Thus, the proper boundary conditions on the 
crack surface are satisfied in an implicit manner and 
discretization of the crack boundary is not necessary in a 
numerical solution procedure. 

The remaining boundary condition (10) on the outside 
surface is satisfied by using a differentiated version of (12) 
and taking the limit as p inside B approaches a point P on 
dC2. Defining 

«.-*0 «--*•(£) (16) 

and 

dK 

~ds 
= Re 

d<j> 

~ds 
— Hjrij (i summed over 1, 2) 

where «, are the components of the unit outward normal to 
dC2 at some point on it, the boundary condition (10) becomes 

0=(p Hi(P,Q)ni(P)G{Q) dsQ 

ec2 
+ \AHi(P,q)n,(P)f(q)dAq (17) 

Equation (17) is valid for a point P on dC2 where it is 
locally smooth. The current components J\ and J2 at a point p 
inside the body are obtained from equations like (12) with the 
kernel K replaced by Hl(p,Q) and H2(p,Q), respectively. 
Care must be taken to include the appropriate residues in the 
formula for Jj whenp approaches a boundary point P [7]. 

Discretization of Equations and Solutions Strategy. The 
outer boundary of the body, dC2, is divided into N2 straight 
boundary elements using Nb (Nb =N2) boundary nodes and 
the interior of the body, A, is divided into n, triangular in
ternal elements. A discretized version of equation (17) is 

0 = E N2 J As,- Hi{PM,Q)ni(PM)G(Q)dsr 

+ £„,. i*A,H, (PM,q)n, (PM)f(q) dA„ (18) 

where PM is the point P where it coincides with a node M at a 
center of a boundary segment on dC2 and As, and AA, are 
boundary and internal elements, respectively. 

A simple numerical scheme is used in which the source 
strengths G are assumed to be piecewise uniform on each 
boundary segment with their values to be determined at the 
nodes that lie at the centers of each segment. The integrals of 
Hj on boundary elements are evaluated analytically for the 
singular and by Gaussian quadrature for the regular portions. 
Nonsingular area integrals of known integrands over 
triangular internal cells are evaluated by Gaussian 
quadrature. Evaluation of singular area integrals require 
special care [12]. 

Substitution of the piecewise uniform source strengths into 
equation (18) and carrying out of the necessary integrations 
leads to an algebraic system of the type 

[ 0 ) = l A ] l G ) + [d} (19) 

where the vector (G} contains the unknown source strengths 
on dC2. 

Equation (12) for the stream function \p and analogous 
equations for the current components J, are discretized in 
similar fashion. 

The solution strategy is as follows. The matrix [A] and 
vector {d} in equation (19) are first evaluated by using the 
appropriate expressions for the kernels and the prescribed 
function / in equation (6). Equation (19) is solved for the 
vector (G) . This value of (G) is now used in a discretized 
version of equation (12) to obtain the values of the stream 
funciton \p at any point p. Finally, the current vector at any 
point is obtained from equations analogous to (12). 

Numerical Results 
Field Due to a Circular Induction Coil. A center-cracked 

square plate with a circular induction coil placed above it is 
shown in Fig. 2. The square plate is of side L with a center 
crack of length c = 2a. The coordinate system is shown in Figs. 
1 and 2. The coil is of radius a0 with its center at the point (x°, 
x2, h0). The induced field B° at a point q(x{, x2) in the plate, 
from the Biot-Savart law, is 
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x, q 

~o 6 a ""x. 

Fig. 2 Diagram showing coil and cracked plate geometry 

B " 
ixdl . ds X R 

coil (20) 
4TT '""' R> 

where jia is the permeability of vacuum, / is the current in the 
coil, ds a length element along the coil (c/s = e ,̂fforf0) and 

- R = (x°-x{ +a0cos<t>)i+ (x2 —x2 +oosin0)j + /!ok 

with.K = IRI. 
Thus, the function/(x,, x2) in equation (6) is 

io3on0l . ck- (rfsxR) 
f(X[,X2)- !am 

c4ir R1 

The dimensionless line integral 3 can be written as 

k - ( d s x R ) c 

(21) 

Ri Jo 

-10 
-10 - 8 

Fig. 3 Stream lines for induced currents in an uncracked square plate 
by a circular coil. L = 20, a0 =4 , x^ = xSj = 0, h0 = 1. 

£ = 20, a 0 = 4 a n d 1, h0 = \, 

i? =0, 1,2,3,4, 5, and 6, x2=0 

The dimensionless crack length here is 4. The results for any 
crack length c can be determined from the preceding 
equations. 

A typical boundary element mesh for the problem is shown 
in Fig. 3 of [12]. Only the upper half of the plate is modeled 
due to symmetry. Nonsingular integrals are evaluated by 
Gaussian quadrature with 6 Gauss points on a boundary 
segment and 7 Gauss points in an internal cell. A 4 x 4 grid is 
used for the evaluation of singular area integrals (see [12]). 

The uniform field problem is analogous to the Saint Venant 
problem of torsion of long prismatic bars with end couples. 
The computer program used here has been verified by solving 

c[g0[(x'|' -jf |)cos0 + (xl - x2)sin0] + al) d<t> 

[(*? ~xt)
2 + (x{l -x2)

2+2a0[(x'J -x1)cos</. + (x,
2
) -x2)sin0] + al + h2

0]
3/2 

This integral is evaluated by Gaussian integration in the 
numerical calculations (6 Gauss points between 0-7r/2). 

Nondimensionai Equations. Equation (6), with f(xt ,x2) 
defined by equation (21), can be nondimensionalized to the 
form 

where 

i--
64\pc 

V 2 i / - ( i l , i 2 ) = g 

Xj=4Xj/c, xi;=4xli'/c 

(22) 

HR ' 

(i=l,2), L = 4L/c, a0=4a0/c, h0=4h0/c 

16c2 

V2 

and the skin depth 

/ ? = • 
d2 d2 

5 = . 
CJCTftQ 

Further, the dimensionless current density is 

- 16/c2 

J-~ 
UR 

Geometrical Parameters and Boundary Mesh. The values 
of the geometrical parameters, used in the numerical 
calculations, are 

torsion problems in the absence of cracks [13] and the logic 
for inclusion of the crack has been verified by solving Mode 
III crack problems [7]. 

The boundary integral algorithm was also applied to a plate 
with a notch cut instead of a crack. The results were compared 
with an analysis using a finite element method [11], and the 
agreement was very good. 

Eddy Current and Temperature Lines. Eddy current 
stream lines (constant \p lines) are shown in Figs. 3-4 for a coil 
of radius 4. Figure 3 shows the lines in a plate without a crack 
in it, and Fig. 4 shows how the stream lines are affected by the 
crack for different coil positions. The crowding of stream 
lines near the crack tip leads to large gradients of \j/ (and 
therefore large induced currents) in this region. The local 
temperature is proportional to the square of the current 
density (J-J) and this leads to a hot spot at the crack tip. This 
is shown in Fig. 5 which shows lines of constant induced 
temperature. The contour lines go off scale as one approaches 
the crack tip. The behavior of the singularity at the crack tip is 
discussed later in the section entitled "Eddy Current Intensity 
Factor." 

Temperature Scans. A matter of considerable interest in 
this approach to nondestructive testing is the existence of hot 
spots due to the presence of a crack. Figure 6 shows calculated 
temperature profiles along a line slightly above the crack 
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Fig. 4 Stream lines for induced currents in a cracked square plate by a r a- ° r ' 0 , s °> '™ucea temperature or eaay current aei 
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Fig. 6 Plots of induced temperature or eddy current density squared 
various coil 
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Fig. 5 Induced temperature or eddy current density square lines for 
induced currents in a cracked plate by a circular coil. a0 =4 , x? = 2, 

= 0 ,h n = 1 

(x2 =0.05) for different coil positions (x = 0, 1,2, and 6). The 
coil radius here is 4 (equal to the crack length). Hot spots are 
seen near the crack tips. The strongest hot spots arise when an 
edge of the coil is near a crack tip. These temperatures are 
much higher than other moderate hot spots elsewhere in the 
plate. A discussion of experimental results is given in the next 
section. 

Self Induced Field at Center of Coil. One method of 
electromagnetic nondestructive testing uses one or more 
passive sensing coils together with an active induction coil 
[14]. The purpose of the sensing coils is to measure the self 
induced field (back e.m.f.) and to try to observe changes in 
back e.m.f. due to the presence of cracks. With this in view, 
the self induced field was calculated at the center of the in
duction coil for various coil positions. The method used is the 
Biot-Savart Law which gives the induced field B[ as 

/x0/;f , (JxR) 

Fig. 7 Self induced field at the center of the induction coil as a func
tion of coil position. a0 = 4, x\ = 0, / i0 = 1. 

used. The integral must be evaluated over the plate with dA an 
area element in the plate. The current density is assumed to be 
piecewise uniform over each internal cell in this approximate 
calculation, with the value determined at the centroid (x\ 
of the cell. Thus, in this case 

R = ( ^ - ^ ) i + ( J C § - J c S ) J + M 

and 

*S) 

B> 
fi0h f, AAi[Jl(x°2-x

c
2)-J2(x°l-~x\)] 

Ait R3 (24) 

4 T 
Jplate* 

R1 -dA (23) 

where now the induced current density in the plate must be 

where A/4, is the area of the rth triangular element. 
A plot of normalized B[ with respect to coil position x°t is 

shown in Fig. 7. The values are normalized with respect to B^ 
when the coil center is directly above the crack center (i.e., 
x° =x\ =0). It is seen that in this example the position of the 
coil relative to the crack causes little variation in the induced 
field at the coil center. The variation of B\ with x\ has not 
been calculated. From these calculations, it appears that for 
low frequencies the back e.m.f. method may not be useful for 
detection of cracks and that the temperature scan approach 
appears to be much more promising for nondestructive testing 
in this case. 
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Fig.9
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Fig. 9 (a) Black·and·while photograph of color quantized infrared
isotherms of induced eddy currents in a cracked aluminum plate

0)

Fig. 9 (b) Crack and coil geometries for the photographs shown in Fig.
9 (a)

on a 5.1-cm coil form so that the mean diameter of the coil
was about 5.7 cm, slightly smaller than the crack length. The
width of the coil was 1.3 cm and the coil face was placed 6.4
mm from the plane of the cracked plate.

Pulsed electric currents of the order of 9.3 KA peak current
and 3.2 msec. duration were used with a rise time to peak of
about 0.7 msec. The sensitivity of the infrared system was
0.1-0.2°C. If an infrared scan is made of the plate im
mediately after the firing of the current pulse, heat con
duction may be neglected, and the measured rise in tem
perature is proportional to the integral of P over time. (See
e.g.[ll].)

The infrared system used for these experiments is a UTI
Corp. Spectrotherm infrared scanning system. Radiation
from different points in the plane of focus is detected by a
photoconductive crystal. A two-dimensional scan is obtained
by two sets of rotating mirrors. The output can be displayed
either on a grey scale tube or the voltage can be color quan
tized into 10 colors. Figure 9(a) shows a black-and-white

(25)

Right crack tip

x, =2

· r Left crock tip
,/ xI = -2
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u
J:'
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c
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~
::J
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>- 05
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Eddy Current Intensity Factor. It is well known from
linear elastic fracture mechanics that stress components
exhibit a square root singularity near a crack tip. It is
therefore expected that the components of the current vector,
in this problem, should display similar behavior near a crack
tip. This, in fact, is the case, and the eddy current density
squared is inversely proportional to the distance r from the
crack tip (see Fig. 11 in [12]).

An eddy current intensity factor Mill' analogous to the
stress intensity factor for Mode III, is defined here as

, c
12 =M111 

r

o 2 3 4 5 6

Coil Center x~
Fig. 8 Eddy current intensity factor at crack tips as functions of coil
position. ao = 4, Jig = 0, tlo = 1.

A plot of Mill at the two crack tips, as functions of coil
position, is shown in Fig. 8. The eddy current intensity factor
is seen to peak when an edge of the coil is near a crack tip. At
low frequencies, displacement currents are expected to have
little effect on current singularity at a crack tip.

Computing Times. All the computing reported in this
paper was carried out on an IBM 370/168 computer at
Cornell University. A typical computing time for stream lines
in a cracked plate was a fixed coil position is 100 c.p.u. sec.

Experimental Results
Infrared Experiments. Conventional eddy current

nondestructive techniques use a small induction coil and
search coils to induce eddy currents near the surface of solids
and to measure the back e.m.f. generated by these currents
[14]. To detect a flaw or a crack, the coils must be moved over
the surface near the flaw in order to measure a change in
voltage in the search coil. Recently a new method has been
proposed using infrared scanning technology [11]. This
method is based on the fact that eddy currents create heat and
that this small temperature change can be detected using an
infrared sensitive device.

In the present experiments an aluminum plate 15 cm x 30
cm, 0.51 mm thick, had a crack placed in its center, parallel to
the 15 cm width. The crack was created by scoring a line in the
aluminum with a sharp edge and flexing the plate until fatigue
produced a through crack in the plate. The length of the crack
was 6 cm. One tip of the crack was 3 cm from one edge of the
plate and the other was 6 cm from the other edge [see Fig.
9(b)].

The induction coil was wound from 10 turns of copper wire
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photograph of two color-quantized infrared scans. Each 
photograph is obtained from a single firing of the current 
pulse. The scan time for this infrared system is about 1 sec. 
Other systems exist with scan times of the order of 1/16 sec. 
Each of the scans represent J2 "isotherms" for different 
induction coil positions. The top photograph corresponds to a 
coil position centered at the middle of the crack. The bottom 
photograph corresponds to an induction coil position centered 
to the left of the crack with the coil center 4 cm from the left 
edge of the plate [Fig. 9(b)]. These photographs show that a 
"hot" spot forms at the tip of the crack due to the current 
flowing around the crack. (The white line shows the vertical 
position of the crack.) In Fig. 9(a) a right crack tip shows up 
as circular isotherms. When the coil position is moved to the 
left the left crack tip shows up as a hot spot, which appears as 
circular isotherms. The hot spot on the left edge is due to 
increase of current density near the edge. Needless to say, the 
color photographs are more dramatic. But the experiments 
show the same qualitative behavior as the numerical results in 
Figs. 5,6, 10 and 11. 

Self field effects are present in these experiments since the 
skin depth here is not very large compared to sample 
thickness. As mentioned before, self field effects have been 
ignored in the calculations presented earlier in this paper. 
Thus, the idea here is to show qualitative agreement between 
theory and experiment. Also, finite element calculations 
including self field effects predict hot spots at crack tips [11]. 

Further experimental work must be done to establish the 
practical use of this technique, especially regarding below-
surface cracks that do not penetrate the solid. The results do 
indicate the potential for such a technique. It is a visual 
method whose features change qualitatively as well as 
quantitatively when a crack interupts the flow of induced 
currents. 
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Fig. 10 Calculated stream lines for induced currents in a cracked 
square plate by a circular coil for the experimental situation [Fig. 9 (a); 
part (1)] with a 0 = 1.91, x? = 0,h0 = 0.85. 
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Fig. 11 Calculated induced temperature (or eddy current density 
squared) along a line slightly above the crack (x2 = 0.05) for the ex
perimental situation [Fig. 9(a); part (1)] with a u = 1.91, x? = xj> = 0, hQ 

= 0.85. 

References 
1 Yagawa, O., Masuda, M., Horie, T. and Ando, Y., "Dynamic Fracture 

of Cracked Beam Under Electromagnetic Force." Proceedings of International 
Conference on Analytical and Experimental Fracture Mechanics, Sih, G. C , 
and Mirabile, M., eds., Sijthoff and Noordhoff, 1981, pp 757-769. 

2 Carpenter, C. J., "Comparison of Alternative Formulations of Three-
Dimensional Magnetic Field and Eddy Current Problems at Power Frequen
cies," Proceedings of the IEE, Vol. 124, No. 11, Nov. 1977, pp. 66-74. 

3 Wu, Y. S., Rizzo, F. J., Shippy, D. J., and Wagner, J. A., "An Ad
vanced Boundary Integral Equation Method for Two-Dimensional Elec
tromagnetic Field Problems,'' Electric Machines and Electromechanics, Vol. 1, 
1977, pp. 301-313. 

4 Ancelle, B., and Sabonnadiere, J. C , "Numerical Solution of 3D 
Magnetic Field Problems using Boundary Integral Equations," IEEE Trans
actions on Magnetics, Proceedings of INTERMAG, Sept. 1980. 

5 Trowbridge, C. W., "Applications of Integral Equation Methods for the 
Numerical Solution of Magnetostatic and Eddy Current Problems," Report 
No. RL-76-071, Rutherford Laboratory, Chilton, Didcot, England, June 1976. 

6 Salon, S. J., and Schneider, J. M., "A Comparison of Boundary Integral 
and Finite Element Formulations of the Eddy Current Problem," IEEE Paper 
80 SM 526-4, 1980. 

7 Mukherjee, S., and Morjaria, M., "Boundary Element Analysis of Time-
Dependent Inelastic Deformation of Cracked Plates Loaded in Anti-plane 
Shear." International Journal of Solids and Structures, Vol. 17, No. 8, Aug. 
1981, pp.753-763. 

8 Mukherjee, S., and Morjaria, M., "A Boundary Element Formulation 
for Planar, Time-dependent Inelastic Deformation of Plates with Cutouts," 

International Journal of Solids and Structures, Vol. 17, No. 1, Jan. 1981, pp. 
115-126. 

9 Morjaria, M., and Mukherjee, S., "Numerical Analysis of Planar Time-
Dependent Inelastic Deformation of Plates with Cracks by the Boundary 
Element Method," International Journal of Solids and Structures, Vol. 17, No. 
1, Jan. 1981, pp. 127-143. 

10 Moon, F. C , "Problems in Magneto-Solid Mechanics," Chapter 5 in 
Mechanics Today, Vol. 4, Nemat-Nasser, S., ed., Pergamon Press, Oxford, 
1978, pp.307-390. 

11 Yuan, K. Y., Moon, F. C , and Abel, J. F., "Numerical Solutions for 
Coupled Magnetomechanics," Department of Structural Engineering Report 
Number 80-5, Departments of Structural Engineering and Theoretical and 
Applied Mechanics, Cornell University, February 1, 1980. See also, "Magnetic 
Forces in Plates Using Finite Elements," Proceedings of the Third Engineering 
Mechanics Division Speciality Conference, ASCE, Austin, Texas, September 
1979, pp.730-733. 

12 Mukherjee, S., Morjaria, M. A., and Moon, F. C , "Eddy Current Flows 
Around Cracks in Thin Plates for Nondestructive Testing." Report for ONR 
Contract N00014-79-C-0224. Departments of Theoretical and Applied 
Mechanics and Structural Engineering, Cornell University, Ithaca, N.Y., Mar. 
1981. 

13 Mukherjee, S., and Morjaria, M., "Comparison of Boundary Element 
and Finite Element Methods in the Inelastic Torsion of Prismatic Shafts," 
International Journal for Numerical Methods in Engineering, Vol. 17, No. 10, 
Oct. 1981, pp. 1576-1588. 

14 Libby, H. L., Introduction to Electromagnetic Nondestructive Test 
Methods. Wiley-Interscience, New York, 1971. 

Journal of Applied Mechanics JUNE 1982, Vol. 49/395 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



J. M. Redely 
Professor. 

Mem.ASME 

W. C. Chao 
Graduate Research Assistant. 

Department ot Engineering Science and 
Mechanics, 

Virginia Polytechnic Institute 
and State University, 

Blacksburg, Va. 24061 

Nonlinear Oscillations of 
Laminated, Anisotropic, 
Rectangular Plates 
A finite-element analysis of the equations governing the large-amplitude, free, 
flexural oscillations of laminated, anisotropic, rectangular plates is presented. The 
equations account for transverse shear strains as well as large rotations. Numerical 
results of nonlinear fundamental frequencies are presented for rectangular plates of 
both angle-ply and cross-ply constructions. The effects of amplitude, boundary 
conditions, transverse shear, aspect ratio, orientation of layers, and materials 
anisotrophy on natural frequencies are investigated. The present finite element 
results agree with other approximate solutions available in the literature. 

Introduction 

The determination of natural frequencies is of fundamental 
importance in the design of many structural components, 
including turbine blades, compressor blades, aircraft 
propeller blades, and helicopter rotor blades. It is necessary 
that the natural frequencies of vibration be determined ac
curately in order to obtain a design that results in virtually 
resonant-free structural components. An accurate deter
mination of stresses and natural frequencies depends largely 
on the theory used to model a given structure. The theory 
should accurately describe the kinematics, nonlinear material 
behavior, and boundary and loading conditions. In the case 
of composite plates and shells, the inclusion of transverse 
shear strains is very important because the natural frequencies 
calculated using the classical (thin-plate or thin-shell) theory 
are higher than those obtained using a theory that accounts 
for the transverse shear strains. Further, when the amplitudes 
of vibration are large compared to the thickness, the in
teraction between the inplane modes and normal modes must 
be considered. 

The first generalization of the Reissner-Mindlin thick-plate 
theory for homogeneous, isotropic plates to arbitrarily 
laminated anisotropic plates is due to Yang, Norris, and 
Stavsky [1]. Whitney and Pagano [2] presented closed-form 
solutions to the theory when applied to certain cross-ply and 
angle-ply rectangular plates. A generalization of the von 
Karman nonlinear plate theory (see Herrmann [3]) for 
isotropic plates to include the effects of transverse shear and 
rotatory inertia in the theories of orthotropic plates was due 
to Medwadowski [4], and anisotropic plates was due to 
Ebcioglu [5]. 

A review of the literature on the geometrically nonlinear 
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oscillations of continuous media reveals that two fun
damental approaches have been followed. The first is the true 
free oscillation problem, in which the displacement modes are 
assumed and the nonlinear partial differential equations are 
reduced to ordinary differential equations in time (a single 
differential equation when the transverse shear and rotatory 
inertia are omitted). The second approach assumed a priori 
that the deflection time function is sinusoidal. The first ap
proach has been employed by most of the previous works (see 
[6-19]) and the second approach was used in [20]. 

Geometrically nonlinear oscillations of single-layer or
thotropic plates was considered by Ambartsumyan [6], and 
Hassert and Nowinski [7]. Using the Galerkin method, 
Nowinski [8, 9] analyzed rectilinearly orthotropic plates of 
circular and triangular planforms. In [6-9] the effects of 
transverse shear deformation and rotatory inertia were not 
considered. The dynamic analog of Berger's equation of 
motion, including the effects of the transverse shear and 
rotary inertia, was presented by Wu and Vinson [10, 11] for 
isotropic and specially orthotropic plates (also, see 
Sathyamoorthy [12, 13]). Mayberry and Bert [14] presented 
the results of both experimental and theoretical investigation 
of a single-layer specially orthotropic rectangular plate with 
all four edges clamped. The theoretical investigation did not 
consider the effect of transverse shear deformation and 
rotatory inertia. Using the Galerkin and Runge-Kutta 
methods, Prabhakara and Chia [15] and Sathyamoorthy and 
Chia [16] analyzed orthotropic and anisotropic rectangular 
plates. 

Compared to the literature cited in the foregoing for single-
layer orthotropic plates, the literature on the geometrically 
nonlinear oscillations of multilayer anisotropic plates is 
limited. Whitney and Leissa [17] presented a dynamic analog 
of the von Karman nonlinear plate theory for layered com
posite plates. In this paper the transverse shear deformation 
and rotatory inertia were neglected, and no numerical results 
were presented. An extension of their earlier works [10, 11] to 
deal with nonlinear vibration of symmetrically stacked 
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laminated composite plates was presented by Wu and Vinson 
[18]. In symmetrically stacked (with respect to the midplane) 
laminated plates, the bending-stretching coupling terms 
vanish and the equations become relatively simpler. The 
analysis of unsymmetrically laminated, simply supported, 
angle-ply plates was due to Bennett [19]. Using the thin-plate 
theory of layered composite plates and the Galerkin method, 
Bert [20] investigated the nonlinear vibration of a rectangular 
plate arbitrarily laminated of anisotropic material. A 
multimode (two-term) solution for nonlinear vibration of 
unsymmetric all-clamped and all-simply supported angle-ply 
and cross-ply laminated plates was reported by Chandra and 
Basava Raju [21, 22]. Chandra [23] used a one-term Galerkin 
approximation of the dynamic von Karman plate equations 
and the perturbation technique for the resulting ordinary 
equation in time to investigate the large-amplitude vibration 
of a cross-ply plate which is simply supported at two opposite 
edges and clamped at the other two edges. Chia and 
Prabhakara [24] presented an analytical investigation of the 
nonlinear, free flexural vibrations of unsymmetric cross-ply 
and angle-ply plates with all-clamped and all-simply sup
ported edges. The normal and tangential boundary forces in 
the plane of the plate were assumed to be zero. In [17, 19-24], 
the effects of shear deformation and rotatory inertia were 
neglected, and special goemetries and plate constructions were 
considered. Recently, the effect of transverse shear and 
rotatory inertia on large-amplitude free vibration of 
anisotropic skew plates was reported by Sathyamoorthy and 
Chia [25, 26]. These papers used a single-modal analysis, in 
which the boundary conditions and any geometrical 
requirements are satisfied by the assumed mode shapes. 

A review of the literature indicates that no finite-element 
analyses of geometrically nonlinear oscillations of layered 
composite plates are available. The preliminary works of the 
authors [27, 28], in which it was assumed that the stiffness 
matrix is independent of the time functions - an assumption 
not valid in general - are the only ones known to the authors. 
The present paper investigates the two traditional approaches 
(assumed displacement-mode shape approach, and assumed 
time function approach) using the finite-element method. For 
the first time, an agreement between the present finite-element 
approximate results and other approximate results (see 
[21-24]) of nonlinear frequencies of layered anisotropic 
composite plates is found. 

Equations of Motion 
The displacement assumptions of the shear deformable 

theory (see Whitney and Pagano [2]) and the nonlinear strain-
displacement relations of the von Karman theory (see 
Whitney and Leissa [17]) are used in the formulation of the 
equations of motion. It should be pointed out that the theory 
does not account for delamination between layers and large 
strains. It is assumed that the stresses normal to the middle 
surface of the plate are negligible when compared to the 
inplane stresses. The plate under consideration is composed of 
a finite number of orthotropic layers of uniform thickness 
having principal axes of elasticity that are oriented arbitrarily 
with respect to the plate axes. The plate x and y coordinates 
are taken in the midplane of the plate with z-axis normal to 
the midplane. Under these assumptions, the equations 
governing a layered composite plate are identical to those of 
an ordinary plate with the exception of the plate constitutive 
equations. Here a brief review of the pertinent equations is 
given. For additional details, the reader is referred to [2, 17, 
27]. 

Like in the Reissner-Mindlin thick-plate theory, the 
displacement field in a layered composite plate is assumed to 
be of the form, 

u,(x,y,z,t)=u(x,y,t) + zi< x (x ,y ,t), 

u2(x,y,z,t) =v(x,y,t) +zty(x,y,t), (1) 

Ui(x,y,z,t) =w(x,y,t). 

Here / is the time, U\, u2, «3 are the displacements in x, y, z 
directions, respectively, u, v, w are the associated midplane 
displacements, and \px and \j/v are the slopes in the xz and yz 
planes due to bending only. It is clear that the transverse shear 
strains (yx, and yvz) are constant through the thickness. To 
allow for linear distribution of the transverse shear strains, 
one must add higher-order terms in z (see [29]) to the 
displacements in (1). However, this in turn increases the 
number of dependent variable and hence the computational 
effort. 

The equations of motion are the same as those governing an 
ordinary plate (with transverse shear strains, rotatory inertia 
terms, and nonlinear terms included). The plate constitutive 
equations are given by 

The Ay, 

r) -W " 
reri 
W " 

B,j, D,j {ij = 

'A,j Bu 

Bji DtJ 

/I44 A4S 

/145 A5S _ 

= 1,2,6), and 

(2) 

N o m e n c l a t u r e 

Aij,Bjj,Dij = extensional, flexural-extensional, and 
flexural stiffnesses (ij= 1,2,6) 

a,b = plate planform dimensions of x,y direc
tions, respectively 

Et ,E2 = layer elastic moduli in directions along 
fibers and normal to them, respectively 

G|2,G|3,G23 = layer inplane and thickness shear moduli 
h = total thickness of the plate 
/ = rotatory inertia coefficient per unit mid

plane area of layer 
kj = shear correction coefficients associated with 

theyz and xz planes, respectively (/ = 4,5) 
MhN; = stress couple and stress resultant, respec

tively (/= 1,2,6) 
P = laminate normal inertia coefficient per unit 

midplane area 
Qi = shear stress resultant (/ = 1,2) 
Qy = plane-stress reduced stiffness coefficients 

UJ= 1,2,6) 

R = laminate rotatory-normal coupling inertia 
coefficient per unit midplane area 

u,v,w = displacement components in x,y,z direc
tions, respectively 

(J,, V!t W; = nodal values of displacements u, v, w 
(/=1,2, . . . ,n) 

x,y,z = position coordinates in cartesian system 
(A) = column vector of generalized nodal 

displacements 
e, = strain components (/= 1,2, . . . ,6) 

0„, = orientation of wth layer (m= 1,2, . . . ,L) 
p(m) _ density of wth layer (/= 1,2, . . . L) 

a, = stress components (/= 1,2, . . . ,6) 
4>i = finite-element interpolation functions 

(z'=l,2, . . . ,n) 
i/'v,i^v = bending slope (rotation) functions 

cj = natural frequency of free vibration 
<J>L<<^NL — linear and nonlinear fundamental 

frequencies, respectively 
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respective inplane, bending-inplane coupling, bending or 
twisting, and thickness-shear stiffness, respectively: 

{Au,BiJ,DiJ)=Yi r '"+ 1 Qfr)(Uz,z2)dz,(iJ= 1,2,6) 
... ** zm 

E r ' " + I kfoQ^dz, (/J = 4,5) 
... J Zm 

(3) 

where Q\]n) are the stiffness coefficients of the /nth layer in 
the plate coordinates, k, are the shear correction coefficients, 
and z,„ denotes the distance from the midplane to the lower 
bottom surface of the mth layer. 

Finite-Element Formulation 
Toward constructing the finite element model of the 

equations of motion, first we write a variational (i.e., virtual-
work) form of the governing equations (see [27]) 

0= (5«>A.N, + 8utVN6 + 8u(PuM + R\pXt„) + •••• 
J R 

dSw dw / dhw dw d8w dw 
dx dx V dy dx dw dy 

\ dbw dSw dw 
•N2 

dy dy 

H— ] dxdy + work done by applied forces (if any), (4) 

wherein the stress and moment resultants (Nh M,, Q,) are 
given in terms of A's, B's, D's, and the displacement 
gradients. Due to the presence of the nonlinear terms (in TVs 
and M's), the resulting stiffnesses are nonlinear and un-
symmetric. To see this, consider the terms 

8u_xNl =5U£[AJ1[UJX+ - (wiX)2] + -- + Bi6^v) 

5(wiV)wiA.A'| =6WJWJ[AU [Uj 

+ i ( W v ) 2 ] + . . . . + B I 6 ^ ) 

(5) 

(6) 

Note that the underlined terms are nonlinear and not the same 
when Su and Sw are interchanged. The underlined term in (5) 
contributes to the stiffness coefficients in location (1), (3) 
wherein the underlined terms in (6) contributes to location (3), 
(1). In the finite-element analysis of the nonlinear von Kar-
man equations, most investigators linearize the equations 
before taking the variation: 

1 
(w,.v)2=P.vw,.v> P, = 2 w , , (7) 

where Px is kept constant during the variation. Although the 
procedure yields a symmetric stiffness matrix, it is 
mathematically incorrect. The linearization must be carried 
only after the variational formulation is completed. We now 
return to the finite-element formulation. 

Over a typical finite element Re, the generalized 
displacements are assumed to be of the form, 

n 

n 

v=V(x,y)T2{t), V=Ev^i 

tl 

w^W(x,y)T^{t), W=YlWi<j>i 

i 

n 

+x=X(xj)u(t), X=Y,X,4>, 
i 

i 

tv = Y(x,y)T5(t), r = £ y ; 0 , (8) 

Fig. 1 Effect of elastic properties on the ratio of nonlinear to linear 
fundamental frequencies of two-layer (0 deg/90 deg) simply supported 
(6C6) square plate (b/h = 1000) 

l.'l PRESENT ) MATERIAL 1 
REF. [ 2 1 ] | 
PRESENT ) M A T E R I A L ^ 

j . M A T E R . A l ^ , 

3,0 
Fig. 2 Effect of elastic properties on the ratio of nonlinear to linear 
fundamental frequencies of two-layer (0 deg/90 deg) clamped (BC2) 
square plate (a/h = 1000) 

where </>,• are the finite interpolation functions, U, is the nodal 
value of U at node /, and T, (i= 1,2,...,5) are the time func
tions whose specific form is to be determined. Substituting (8) 
into the variational form (4), we get 

[M]{fA}+[K(T,A))lA} = lO} (9) 

where [ A j = [ U,•, K,-, W{ ,X,•, Y, ] T is the column vector of the 
nodal values of the generalized displacements, [K] is the 
stiffness matrix, and [M] is the mass matrix (see the Appendix 
for the details). An examination of the stiffness matrix shows 
that the amplitudes of various generalized displacements are 
coupled and that the usual eigenvalue problem of the linear 
theory is not present in the nonlinear theory. 

When the effects of transverse shear and rotatory inertia 
are not considered, equation (9) can be reduced to a "Duff-
ing-type" equation (see [10, 11]). In [27, 28] it was assumed 
that TX =T2 =... = T5 =cos u>t and then only the first term in 
the expansion of cos wt was retained in the stiffness matrix. 
Clearly, this is equivalent to assuming that [K] = [K( A)]T is a 
linear function of r, where [A"(A)] is the nonlinear stiffness 
matrix in the nonlinear static bending analysis (see [27]). 
Although this assumption cannot be justified on physical or 
mathematical grounds, the results obtained in [28] are ap
parently in good agreement with the results of Rao, et al. [30], 
Mei [31], Chu and Herrmann [32], Wah [33], Yamaki [34], 
and Kanaka Raju, and Hinton [35] for isotropic plates 
(without the inclusion of shear deformation and rotatory 
inertia). 

In the present study, we considered equation (9) in its actual 
form and assumed that (see Sandman and Walker [36]) 

T,=T2 = n -rl- -r\- = sin2ci)?. (10) 

After substituting the time functions (10) into (9), the 
equation element equations were integrated over the half 
period TV/OI. The resulting equation is a standard eigenvalue 
equation: 

398/Vol. 49, JUNE 1982 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



-a, 

2,0 

° 0,6 1.2 1.8 2.1 3.0 

Fig. 3 Effect of elastic properties and boundary conditions on the 
ratio of nonlinear to linear fundamental frequencies of two-layer (0 
deg/90 deg) square plates (a//) = 1000) 

.5 

1,1 

K 

O MATERIAL 1 j /; 

O MATERIAL 2 j a /h=]000 / 
A MATERIAL 3 ' / £ 
--MATERIAL 
— MATERIAL 

1.2 1.3 2,1 3,0 

Fig. 4 Effect of plate thickness on the ratio of nonlinear to linear 
fundamental frequencies of two-layer (0 deg/90 deg) square plates 
(SC6) 

([Afl-«2[tf(A)])(A) = lO]. (11) 
Element equations (11) are assembled in the usual manner 

and the boundary conditions of the problem at hand are 
imposed before solving the eigenvalue problem. The com
putational procedure consists of direct iteration, in which the 
global stiffness is updated using the eigenvector from the 
previous iteration. The iteration begins with the linear 
eigenvalue problem (so that we obtain the linear frequencies), 
and terminates when the nonlinear frequencies obtained 
during two consecutive iterations differ by some small 
number (say, 10~3). 

Numerical Results 
The numerical results presented in the following were 

obtained using the nine-node quadratic element on an IBM 
3032 computer. The element was already tested in the 

3 

° ™ T ^MATERIAL 1 ? 
— REF. [ 2 1 ] / 
a PRESENT | 
- REF, [21]|"ATERIAL 5/ 

Fig. 5 Effect of elastic properties on the ratio of nonlinear to linear 
fundamental frequencies of two-layer angle-ply (45 degf - 45 deg) 
square plates (a/fi = 1000, BC4) 

o PRESENT l MATEfMAL 3 
- REF, [ 2 1 ] ' 

Fig. 6 Effect of elastic properties on the ratio of nonlinear to linear 
fundamental frequencies of two-layer angle-play (45 deg/-45 deg) 
square plates (a/fi = 1000, SC6) 

nonlinear bending of layered composite plates (see [27]). Only 
one quadrant of the plate was modeled in all of the cases 
reported here. The following boundary conditions were 
considered: 

BCl: Transverse deflection, tangential rotation, and 
inplane displacement parallel to the edge are zero on 
the boundary. 

BCl: Transverse deflection and both rotations are zero on 
the boundary. 

BCi: Transverse deflection and normal rotation are zero 
on the boundary. 

BC4: Transverse deflection and tangential rotations are 
specified to be zero on the boundary; the symmetry 
boundary conditions are: 

a tx = 0: v = \l/x = 0;aty = 0: u=^y=0 

BC5: The transverse deflection, inplane displacements 
normal to the boundary, and tangential rotations 
are specified to be zero at the boundary. 

BC6: Same as BC5, except that no inplane displacements 
are specified on the boundary. 

The symmetry boundary conditions for BCl, BCl, BCi, 
SC5,andSC6are: 
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atx = 0: u=\px=0;aly = 0: v = \pv=0. 

The following material properties were used in the analysis 
(G|2 = G23 =Gn): 

Material 1: Ex/E2 = 40, Gl2/E2 =0.5, y12=0.25 

Material 2: El/E2 = 10, Gl2/E2 = 1/3, ^12=0.30 

Material 3: £ , /£ ' 2 = 3 , G| 2 /£ 2 =0.5, c12=0.25 

Material^ £, =7.07x lO6 psi, E2 = 3.58x 106 psi, 
G12 = 1.41 xlO6 psi, cl2 =0.3 

Material 5: Et =36.4 x 106 psi, E2 =4.79 x 10" psi, 
G|2 = 1.96xl0(l psi, Ĵ I2 =0.3 

These particular material properties were selected in order to 
compare the present solutions with those available in the 
literature. 

First, numerical results of cross-ply plates are discussed. 
Figure 1 shows the plot of nonlinear to linear fundamental 
frequencies versus the amplitude-to-thickness ratio for two-
layer (0 deg/90 deg) square plates {ci/h = 1000) of Materials 1, 
2, and 3, and subjected to boundary conditions described in 
BC6. The figure compares the present finite element results 
with the Fourier series solutions of Chia and Prabhakara [24]. 
The results are in fair agreement with each other (considering 
the fact that the scale used is large). The difference between 
the two solutions increase with the amplitude-to-thickness 
ratio, and degree of material orthotropy. This is also observed 
in the case of clamped (BC2) square plates (0 deg/90 deg) 
from Fig. 2. The results obtained for SC3 were almost 
identical to those obtained for SC2. 

Figure 3 shows similar results (i.e., <jiNL/(x>L versus w0/h) 
for square plates (0 deg/90 deg) of Materials 4 and 5, and 
subjected to various boundary conditions. The present results 
are compared with the Galerkin/perturbation solution of 
Chandra and Raju [22], who investigated the influence of 
movable and immovable inplane boundary conditions. The 
present results agree with those of Chandra and Raju [22] for 
plates of Material 4 (E{/E2=;2) subjected to boundary 
conditions SCI and BC5. However, the present results for 
plates of Materials 5 (Ex/E2~l .6) subjected to the same 
boundary conditions differ considerably from those of 
Chandra and Raju [22]. Note that the difference is more for 
larger ratios of Ex-E2. It appears that Chandra and Raju [22] 
do not include the coupling terms in the nonlinear part of the 
von Karman theory (see Bennett [19]). It should also be 
pointed out that the present finite-element results are higher 
compared to those of Chia and Prabhakara [24] and lower 
compared to the results of Chandra and Raju [22]. 

The effect of thickness on the ratio of nonlinear to linear 
frequencies was also investigated. Figure 4 shows plots of 
o3NL/uiL versus wQ/h for square plates (0 deg/90 deg, BC6) of 
various materials and two different ratios of side-to-
thickness: ct/h =1000, and 10. For Material 3 (Glass-Epoxy) 
the thickness effect was found to be negligible and therefore 
not plotted. Since the thickness shear deformation has a 
pronounced effect on linear fundamental frequency, one can 
conclude from Fig. 4 that the thickness shear deformation has 
relatively less pronounced effect on nonlinear fundamental 
frequencies. 

Next, numerical results of angle-ply plates are presented. 
Figure 5 shows plots of oiNL/ioL versus w0/h for thin 
(a/h =1000) square plates (45 d e g / - 4 5 deg) of Materials 4 
and 5 subjected to boundary conditions in BC4. The present 
results are compared with the Galerkin/perturbation results 
of Chandra and Raju [21]. Again, the present results for 
Material 4 agree more closely with those of Chandra and Raju 
[21], while they differ considerably for Material 5. 

Finally, Fig. 6 shows similar results for square plates (45 
d e g / - 4 5 deg) of Materials 2 and 3, and subjected to boun
dary conditions in BC6. In this case the results were obtained 
by employing the following time functions: 

T = /x = X = sinco/ (14) 

The present results are compared with the double Fourier 
series solutions of Chia and Prabhakara [24]. The results 
agree with each other (within 5 percent) with the present 
results being higher. The finite-element results obtained by 
using the time functions in equation (10) for the same problem 
were found to be quite larger when compared to the results of 
Chia and Prabhakara [24], This discrepancy can be explained 
as follows. In their analysis, Chia and Prabhakara [24] do not 
have the coupling terms (By) in the nonlinear expressions. As 
a result, the time functions in (14) are more suitable for the 
problem. However, the coupling terms are not zero in the 
nonlinear expressions of the present formulation [in fact, they 
are relatively large for the two-layer (45 deg / -45 deg) case], 
and the nonlinearity influenced our results obtained by using 
the time functions in equation (10). 

Summary and Conclusions 
A finite-element analysis of the shear deformable theory 

that also takes into account the nonlinear strain-displacement 
relations (in the von Karman sense) of layered composite 
plates is presented for the nonlinear oscillations of rectangular 
laminated plates. Numerical results of nonlinear to linear 
frequencies are presented showing the effect of large am
plitudes, boundary conditions, thickness shear deformation, 
orientation of layers, and material orthotropy. The present 
finite-element solutions are compared with other approximate 
solutions available in the literature. The agreement is found to 
be very good. It is also observed that the shear deformation 
has less pronounced effect on the nonlinear frequencies. 

Two areas of further research deserve attention. First, a 
more general approach for the selection of the time functions 
T, is necessary. For nonhomogeneous plates, it is logical to 
expect that the wave speeds in x and y directions would not be 
the same (i.e., T, ^ T 2 ) . Second, for an accurate prediction of 
higher modes, a more refined theory of laminated plates is 
necessary. 
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A P P E N D I X 

Elements of Stiffness and Mass Matrices 
Stiffness Matrix: 

[K] 

IK"] 

T[K2i] 

\T[K31] 

T[K'2] 

T[K22] 

\T[Kn] 

\2[K'3] 

\2[K23] 

M*?3] 

p.[K'4] 

Ml*24] 

i^K}4] 

p,[K'5] 

li[K25\ 

(M*35 

+ A3[/^3]) + p.\[K\4]) +p,\[K\n) 

T[K41] T[K42] 

T[K5 T[K5 

(\[Kf] p,[K44] 

+ \2[Kf]) 

(\[K?] p.[Ki4] 

+ X2[/ci3]) 

p[K4 

p.[K5 

Mass Matrix: 

P[S] [0] [0] R[S] [0] 

[0] P[S] [0] [0] R[S] 

[M] = [0] [0] P[S] [0] [0] 

R[S] [0] [0] I\S] [0] 

[0] R[S] [0] [0] 1\S] 

The matrix coefficients Kff are given by 

lKn]=Ail[Sxx] +Al6([S-v] + [SX>Y) +A66[S>'?], 

[Kl2]=Al2[S*-n+Al6lS**]+A26[S»-]+A66[S*?]T 

= [K2']T, 

[K11] =AU [Rf]+AX6[Rf] +Al2([R7] + [Rf]T 

+ [Rf])+A26[Rf]+A(l(s([Rf]T+W/]) 

[K14] =Bn [S»] +B]6([S-v] + [S*>]T, + B66[S»'] 

[K"] =Ba[S*»] + S16[5
XV] +B2,[S>y] + fl66[S«T 

= [K"]T 

[K22]=A22[S»]+A26(ISV]T+[S*>])+A66[S™], 

\K2i]=Ai2[Rf]T + A22[Ry/]+A2(l{[Rf]T + [Rf] 

+ [W])+Al6[R?] +A66([RY }T+[R?]) 

= \^2V 

K24] = Bn[S»]T + B26 [SH + Bi6 IS"] + B66 [S*»] 

= [K42]T, 

[K2i] =B22[syy]+B2f,(is
x>] + [s*y]T) +B66[S«] 

= [K52V 

[K?] =A5S[SXX]+A„asxr] + [SX?]T) +Au[S-vy], 

IK?] = 
2 J B f 

N 
d<t>i d<j)j ' 9 0 , d<j)j d<p, 9 0 / 

- / ' • . 

dx dx 6\dx dy dy dx 
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30, 
— idxdy, 
V J 

+ N2-
dy dy 

[K]4]=A55[SM]+A4,[S'-°] = [KV]\ 

[Kl4] =BU [Rf] +Bl6([Rf] + [Rf]T + [Rf]) 

+ Bl2[Rf]T + ^26 [Rf] + Bnmn + [Rf]) 

= 2[Kf]T, 

[Kf]=A4i[SA)]+A4A[S>a] = [K»}\ 

[Kf] = Bn [Rf] + BI6 [Rf] + B22 [R?] + B26([Rf]' + 

= 2K\iY 
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S^ = 
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Pi 0<p, 

Din [ [ ( dh \ d(t>i d<t>j J , 
dt / d£ dv 
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dw 

~dx 

dw 

^A tdwV . , dwdy 
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On the Solutions to Forced 
Motions of Rectangular Composite 
Plates 
For two different lamination schemes, under appropriate boundary conditions and 
sinusoidal distribution of the transverse load, the exact form of the spatial variation 
of the solution is obtained, and the problem is reduced to the solution of a system of 
ordinary differential equations in time, which are integrated numerically using 
Newmark's direct integration method. Numerical results for deflections and stresses 
are presented showing the effect of plate side-to-thickness ratio, aspect ratio, 
material orthotropy, and lamination scheme. The results presented herein should be 
of interest to composite-structure designers, and to experimentalists and numerical 
analysts in verifying their results. 

Introduction 

With the increased application of composites in high 
performance aircraft, studies involving the assessment of the 
transient response of laminated composite plates are receiving 
attention of composite-structure designers. The linear elastic 
transient response of isotropic plates has been investigated by 
several researchers. Reismann and his colleagues [1-3] 
analyzed a simply supported, rectangular, isotropic plate 
subjected to a suddenly applied, uniformly distributed load 
over a rectangular area. Exact solution was obtained using 
(classical) three-dimensional elasticity theory, and classical 
and improved plate theories. Hinton and his associates [4-7] 
presented transient finite-element analysis of thick and thin 
isotropic plates. The element is based on the Reissner-Mindlin 
thick-plate theory for homogeneous, isotropic plates. Ex
cellent agreement of the finite-element solutions with the 
analytical solutions of Reismann and Lee [1] was obtained. 
Recently, Akay [8] presented large deflection transient 
response of isotropic plates using a mixed finite element. All 
of these studies were confined to homogeneous, isotropic 
plates. 

Layered composite plates exhibit, in general, coupling 
between the inplane displacements and the transverse 
displacement and shear rotations. Consequently, the response 
of composite plates is sensitive to the lamination scheme. 
Also, due to the low transverse shear moduli relative to the 
inplane Young's moduli, the transverse shear deformation 
effects are more pronounced in composites than in isotropic 
plates. Moon [9, 10] has investigated the response of infinite 
laminated plates subjected to transverse impact loads at the 
center of the plate. Chow [11] has employed the Laplace 
transform technique to investigate the dynamic response of 
orthotropic laminated plates, and Wang, Chou, and Rose [12] 
applied the method of characteristics to unsymmetrical or-
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thotropic laminated plates. In a series of papers Sun and his 
colleagues [13-16] have employed the classical method of 
separation of variables combined with the Mindlin-Goodman 
[17] procedure for treating time-dependent boundary con
ditions and/or dynamic external loadings. However, these 
papers were confined to plates under cylindrical bending. 

The purpose of the present analysis is to present the exact 
forms of the spatial variation of the solution for two different 
lamination schemes of rectangular plates, under appropriate 
boundary conditions and sinusoidal distribution of the 
transverse load, and to reduce the problem to one of finding a 
numerical solution to a system of ordinary differential 
equations in time. Then the differential equations are in
tegrated numerically using Newmark's direct integration 
method. The results, although limited to a special class of 
problems, should be of interest to experimentalists and 
numerical analysts in verifying their data. 

Governing Equations 

Here we briefly review the equations governing the 
heterogeneous laminated plate theory originated by Yang, 
Norris, and Stavsky [18] (also see Whitney and Pagano [19]). 
The theory is a generalization of the Reissner-Mindlin thick-
plate theory for homogeneous, isotropic plates to arbitrarily 
laminated anisotropic plates and therefore includes shear 
deformation and rotary inertia effects. However, the theory 
does not account for delamination (i.e., layers are assumed to 
be perfectly bonded together). 

Consider a plate laminated of a finite number of 
homogeneous, uniform-thickness, orthotropic layers with the 
material axes of each layer being arbitrarily oriented with 
respect to the midplane of the plate. Let us select a Cartesian 
rectangular coordinate system such that the x-y plane coin
cides with the midplane of the plate. The displacement field in 
the plate is assumed to be of the form, 

ui(x,y,z,t) = u(x,y,t) + ztx{x,y,t), 

u2(x,y,z,t) = v(x,y,t)+z^r(x,y,t), (1) 

u3(x,y,z,t) = w(x,y,t). 

Here / is the time; w,, w2> "3 are the displacements in x, y, z 
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directions, respectively; u, v, w are the associated midplane 
displacements; and \px and \py are the slopes in the xz and yz 
planes due to bending only. 

Neglecting the body moments and surface shearing forces, 
we write the equations of motion in the presence of applied 
transverse forces, q, as 

N,,A. + /v6,, = /y,,+/?fv,„ 

Qi,.y + Q2,y=P»>,ll+<l(x<y<t) (2) 

M | , . v + M 6 , r - e i = t y v , „ + t f W , „ 

Mb,x+M2,v-Q2 = ItrJ,+RVjl 

where P, R, and / are the normal, coupled normal-rotary, and 
rotary inertia coefficients, 

(P,R,I) = \ ' ' (l,z,z2)pdz 

(\,z,z2)p{",]dz (3) 

However, an exact form of the spatial variation of the 
solution to equation (7) can be developed for two different 
lamination schemes and associated boundary conditions, 
when the plate is of rectangular geometry and subjected to 
sinusoidally distributed (with respect to x and y; arbitrary 
with respect to time) transverse loading. We begin with a set 
of boundary conditions and a solution form that satisfies the 
boundary conditions, and then determine the lamination 
scheme and loading that would satisfy the operator equation 
(7). It turns out that there are two sets of boundary conditions 
and two lamination schemes for which the exact form of the 
spatial variation of the solution can be constructed [20]. 

1 Cross-Ply Plates. Consider the following boundary 
conditions (for any />0) : 

x = 0,a: y = w=^ , ,=0 ; TV, =M, =0 

y = 0,b: u=w=>/,x = 0; N2=M2=0. (8) 

The following form of the solution satisfies the boundary 
conditions in equation (8), 

being the material density of the wth layer, and TV,, Qn
 U~LJ U"»> (0<t>i(x,y), v=£j Vmn (t)4>2(x,y) 

and Mj are the stress and moment resultants. 
The laminate constitutive equations can be expressed in the 

form: 

(4) 

where 

du 
A> — 

dx ' 
e(2 = 

( M 
u . j 
ren 
W 
dv o 
IT' e° 
dy 

du 
= Jy 

~Au 

Bji 

A4 

A> 

dv 
+ -dx> 

V 
A,-

feM w 
A4i' 

A55j 
( " 
U 

dw dw 
dx dy 

K, 
d^v 
. 
dx 

K2 = 
3*v „ 

'- —=- ,K6 = 
dy 

9i//v d\P. 
= —- + —--dy dx 

(5) 

The Ay, Bu, Dy (/, j= 1,2,6), and Au(i,j = 4,5) are the 
respective inplane, bending-inplane coupling, bending or 
twisting, and thickness-shear stiffnesses, respectively: 

(.Au,Bu,Du)='£\""+lQiJ«^\,z,z2)dz, 

A,; = kfkjQU'^dz. (6) 

Here z,„ denotes the distance from the midplane to the lower 
surface of the »?th layer, and k, are the shear correction 
coefficients. 

Equations (2) and (4) can be conveniently expressed in the 
operator form as follows: 

tf-](5} = (/}+[M]{5) (7) 

where ( 5j = [u,v,w,}j/x,^/v)
 T, superposed dots indicate dif

ferentiation with respect to time, and [L] and [M] are matrices 
given in Appendix 1. 

Exact Form of the Spatial Variation of the Solution 

The boundary initial-value problem associated with the 
forced motion of layered anisotropic composite plates in
volves solving the operator equation (7) subjected to a given 
set of boundary and initial conditions. It is not possible to 
construct exact solutions to equation (7) when the plate is of 
arbitrary geometry, constructed of arbitrarily oriented layers, 
and subjected to an arbitrary loading or boundary condition. 

(9) 
!ti,n 

£v = £ x n , n (0 4>i (x,y), f,, = yj Y,„„ (002 (x,y) 

where 

4>\ = cosax sinBy, 0 , = sinew cosBy, <j>} = sinew sin By, 

a = mir/a, B = nir/b. (10) 

Substituting equation (9) into equation (7), we find that 
solution to equation (7) exists when the transverse loading q is 
of the form 

q{x,y,t) = J^Q,m(t)4>i(x,y) (11) 

and the lamination scheme is such that (which corresponds to 
cross-ply lamination scheme), 

Under these conditions, equation (7) becomes, 

[A*]|A) + [C]{A) = (F) (13) 

where IAl = l t / V W X Y l r IF1 = I0 0 O 
0, 01, and the elements of the coefficient matrix [C] are given 
in Appendix 1. 

2 Angle-Ply Plates. Next, we consider the following 
boundary conditions, 

x = 0,a: u = w = ^ , , = 0 ; N 6 = M , =0, 

y = 0,b: y = w=f v = 0; N6=M2=0. (14) 

The following displacement functions satisfy the boundary 
conditions in equation (14): 

M= D um„ (t)4>2(x,y), v= J J V„„, (t)<j>l(x,y), 

JJ Wmn(t)$3(x,y), h+x= !>„„,</>, (^)> 
in,n m,n 

htv=TiY
m„4>2(x,y) (15) 

After substituting equation (15) into equation (7), we find 
once again that solution exists when q is given by equation 
(11), and the lamination scheme is such that (which 
corresponds to antisymmetric angle-ply scheme) 
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--A, -Bu —B,y =Dl, -D,. (16) Numerical Results 

Then equation (7) takes the form 

. lAf\{A)+[K\lA) = [F), 

wherein the coefficients of the matrix [K] are 

(17) 

isted in Ap
pendix 1. 

Thus for a given a = mir/a and (3 = niv/b, one needs to 
integrate the 5 by 5 matrix differential equations (13) and (17) 
for the vector [A] of the generalized displacements. A 
discussion of the numerical integration of these equations is 
given next. 

Numerical Integration of Equations (13) and (17) 

To integrate equations (13) and (17), Newmark's direct 
integration technique [21] is employed. In the Newmark direct 
integration method the first time derivative |A] and the 
solution (A) are approximated at (n+1) time step (i.e., at 
time / = /„ + i = (n + 1)A?) by the following expressions: 

(A|„ + 1 = ( A j „ + [ ( l - a ) ( A ) „ + a | A ) „ + 1]A/, 

[A]„+ 1 = lA)„ + | A ) „ A / + [ ( ^ - / 3 ) | A ] „ 

+ /3|A)„ + 1](A02 (18) 
where a and /3 are parameters that control the accuracy and 
stability of the scheme, and the subscript n indicates that the 
solution is evaluated at «th time step (i.e., at time, t = t„). The 
choice a =1 /2 and /Q = 1/4 is known to give an un
conditionally stable scheme (in linear problems). 

Rearranging, for example, equations (17) and (18), we 
arrive at 

[^][A]„+1 = (F]„,„+I (19) 

where 
[K] = [K\+a0[M], {F} = {F}„ + l+[M](ao{A}„ 

+ ff,[A)„+fl2(A|„), 

a,, = l/(/3A/2), o, = anAt, a7 -<o- J0I 

1 

W 
•1. (20) 

Once the solution (A) is known at t,l + l = (n + l)At, the first 
and second derivatives (velocity and accelerations) of (A) at 
t„+] can be computed from (rearranging the expressions in 
equation (18)), 

{A}„ + ]=a0({A},l + l-{A\ll)-al\A}„-a2lA}„ 

(A]„ + 1 = (A]„+a 3 [A)„+t f 4 [A]„ + l (21) 

where a, = (1 - a) At, and o4 = aAt. 
For a given set of initial conditions [ A10 , ( A) 0 , and ( A J 0 , 

one can solve equation (19) repeatedly, marching in time, for 
the generalized displacements and their time derivatives at any 
time f >0 . Although the spatial part of the solution is exact, 
error is introduced into the equation via the numerical in
tegration in time. In the next section numerical results are 
presented for a number of illustrative examples. 

In all of the numerical examples presented herein, zero 
initial conditions were assumed. All of the computations were 
carried in double precision on an IBM 3032 computer. 

The following data (in dimensional form) were used in all 
of the computations (except in parametric studies, where a 
and h are varied): 

l,a/h = 5), 

= 2 .1xl0 6 N/cm 2 . (22) 

a = b = 25cm, h = 5cm(a / b -

p = 8xlO- 6 Nsec 2 /cm 4 ,£ 2 

The values of a and /3 in the Newmark integration scheme 
are taken to be 0.5 and 0.25, respectively (which correspond 
to constant-average acceleration method). The selection of the 
time step was guided by the following estimate of the time step 
for conditionally stable time integration schemes: 

( A 0 2 < « 2 [ p ( l - . 2 ) / £ l / [ 2 + ( l - . ) ^ [ l + 1 . 5 ( ^ ) ] ] (23) 

Estimate in equation (23) is a modification of the estimate 
given by Leech [22] for classical plate theory to thick-plate 
theory (see Tsui and Tong [23]). For e = 0.3 and alh =5 , 10, 
and 1000 the estimate yields, 

a 

Ti 

A/(/isec) — 

5 

9.46 

10 

4.9 

1000 

0.05. 
(24) 

The effect of the time step on the accuracy of the solution 
was investigated using the shear deformation theory (SDT) as 
well as the classical plate theory (CPT). Table 1 shows the 
center (transverse) deflection and normal stress of a two-
layer, cross-ply square plate (material 1) under suddenly 
applied load for various values of the time step: 

Material 1: E{/E2=25, G12 = G13 = G23 = 0.5£2, e,2=0.25 

(25) 
From the results presented in Table 1 it is clear that the time 
step between 1 and 5 /isec has no appreciable effect on the 
accuracy of the solutions. Furthermore, the shear defor
mation theory is less sensitive to the time step in the range 
considered (consistent with the estimate in equation (23)). The 
effect of the shear deformation on the response is significant, 
as can be seen from the amplitude and period of the center 
deflection (given in parentheses) shown in Table 1. The center 
deflection in SDT is about 30 percent larger compared to that 
in CPT. In all of the subsequent cases to be discussed, a time 
increment of 5/isec was used. 

The first example is concerned with a two-layer cross-ply (0 
deg/90 deg) square plate under suddenly applied transverse 
load (the boundary conditions and the spatial distribution of 
the loading are obvious). The problem was also analyzed 
using the finite element method [24]; the present solution and 
the finite element solution [24] for center deflection, center 
normal stress, corner inplane shear stress, and transverse 
shear stress at the midside are compared in Table 2. The 
solutions are in excellent agreement with each other. The 

Table 1 Effect of the time increment on the center (maximum) transverse deflection and normal stress for two-layer cross-
ply (0 deg/90 deg, Material 1) square plate {alh = 5) under suddenly applied sinusoidal loading 

V 
S w 
D a 
T 
C w 
P a 
T 

1 

0.4609(98)(a) 

357.7 

0.3161(81) 
314.9 

2 

0.4608(98) 
357.3 

0.3160(82) 
314.7 

3 

0.4607(99) 
358.9 

0.3157(81) 
312.8 

4 

0.4606(100) 
359.8 

0.3156(84) 
312.8 

5 

0.4604(100) 
357.8 

0.3153(85) 
310.7 

6 

0.4601(102) 
357.6 

0.3154(84) 
307.4 

7 

0.4586(105) 
357.5 

0.3154(84) 
305.9 

8 

0.4590(104) 
358.2 

0.3139(88) 
305.0 

"Values in the parentheses indicate the time (in /isec) at which the maximum center deflection occurred (CPT = classical plate theory; 
SDT = shear deformation theory). 
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Table 2 Comparison of transverse deflection and stresses obtained in the present study with 
those obtained by the finite-element method" for two-layer cross-ply square plate (Material 
1) under suddenly applied transverse load 

Time 
t 

(ixsec) 

10 
20 
40 
60 
80 

100 
120 
140 
160 
180 
200 

Center 
deflection, w 

present 

0.0076 
0.0365 
0.1472 
0.2922 
0.4116 
0.4604 
0.4173 
0.3010 
0.1562 
0.0414 
0.0013 

FES" 

0.0076 
0.0365 
0.1474 
0.2925 
0.4119 
0.4606 
0.4172 
0.3006 
0.1558 
0.0410 
0.0013 

Normal 
stress, 

present 

4.038 
28.48 
113.6 
227.2 
319.1 
357.8 
323.1 
233.0 
119.6 
30.40 
0.742 

°x 

FES 

3.920 
27.66 
110.3 
220.7 
309.9 
347.3 
313.5 
225.8 
115.6 
29.23 
0.702 

Shear 
stress, 

present 

0.190 
1.611 
8.506 
16.47 
23.85 
26.27 
24.12 
17.05 
8.848 
2.029 
0.248 

°xy 

FES 

0.182 
1.555 
8.243 
15.95 
23.11 
25.43 
23.34 
16.47 
8.533 
1.939 
0.242 

Shear 
stress, 

present 

0.699 
2.252 
5.891 
12.34 
16.34 
18.94 
15.96 
12.58 
6.533 
2.233 
0.564 

°xz 

FES 

0.679 
2.190 
5.730 
12.00 
15.89 
18.40 
16.19 
12.21 
6.327 
2.155 
0.548 

" Finite element solution from [24] (obtained using 2 x 2 mesh of nine-node rectangular elements). 

Table 3 Effect of layers, shear deformation, lamination scheme, and orthotropy on the center transverse deflection 
(reXlO3) of square plates subjected to suddenly applied transverse pulse loading (CP = cross-ply, (0 deg/90 deg/ . . . ); 
AP = angle-ply (45 deg / -45 deg/+ . - . . . ), y = Et/E2, q0 = 10 N/cm2) 

Lamination 
Scheme 1 

Layers 
5 

CP-CPT 
7 = 25 

CP-SDT 
7 = 25 

CP-SDT 
7 = 40 

AP-SDT 
7 = 25 

AP-SDT 
7 = 40 

0.1272 
(55") 

0.3566 
(90) 

0.3233 
(85) 
-

-

0.3153 
(85) 

0.4604 
(100) 

0.3824 
(90) 

0.3387 
(85) 

0.2826 
(80) 

0.1272 
(55) 

0.3386 
(85) 

0.2985 
(80) 
-

-

0.1493 
(60) 

0.2947 
(80) 

0.2438 
(75) 

0.2277 
(70) 

0.1977 
(65) 

0.1272 
(55) 

0.2924 
(80) 

0.2463 
(75) 
-

-

0.1366 
(55) 

0.2809 
(80) 

0.2344 
(70) 

0.2196 
(70) 

0.1922 
(65) 

0.1272 
(55) 

0.2817 
(80) 

0.2366 
(70) 
-

-

0.1325 
(55) 

0.2765 
(80) 

0.2316 
(70) 

0.2170 
(70) 

0.1885 
(65) 

"Values in the parentheses denote the time (in /tsec) at which the maximum center deflection occurred. 
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Fig. 1 Comparison of the present solution with the finite-element 
solution (FES) of two-layer cross-ply (0 deg/90 deg) square plate under 
suddenly applied sinusoidal loading (E1IE2 = 25) 

small difference in stresses is due to the fact that the stresses in 
the finite-element method are computed at the Gauss points. 

Figure 1 shows plots of nondimensionalized center 
deflection and center stress for a two-layer cross-ply (0 deg/90 
deg) square plate (Material 1). The present solutions with and 
without shear deformation are compared with the finite-
element solutions of the shear deformation theory in Fig. 1 
for h = 1 cm (i.e., a/h = 25). From Fig. 1 it is clear that the 
classical plate theory predicts significantly lower values of 
deflection and period. It is also apparent from the results of 
the shear deformation theory that the nondimensionalized 
deflection increases and the period decreases with increasing 
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Fig. 2 Comparison of the present solution finite-element solution 
(FES) of angle-ply {el-$101 - 0 . . . ) square plates under suddenly ap
plied sinusoidal loading (q0 =1okg/cm 2 ;E 1 /E 2 =25) 

values of thickness of the plate. The effect of transverse shear 
and plate thickness on the amplitude and period of the 
deflection is clear. 

Figure 2 shows plots of center deflection and normal stress 
(SDT) for angle-ply square plates (for Material 1 and data in 
equation (22)). The effect of layers (45 d e g / - 4 5 deg/ + / -
...) and -lamination angle on the amplitude and period of 
deflection is apparent. Again the agreement between the 
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present solution and the finite-element solution [24] is ex
cellent. 

To further investigate the effect of the layers, shear 
deformation, lamination scheme, and material orthotropy on 
the transverse deflection and normal stress, parametric studies 
were carried and the results are presented in Table 3. The 
values in the parentheses of Table 3 indicate the time (/xsec) at 
which the maximum deflection occurs. As in the static 
analysis, the response of a two-layer construction is 
significantly different (i.e., larger deflection) when compared 
to single-layer or multilayered plates. 

Figure 3 shows the effect of the angle (d/ — d), aspect ratio, 
and material orthotropy on the center deflection of composite 
plates. The effect on the amplitude and period of the 
deflections is clearly nonlinear. 

The last example is concerned with transient response of a 
two-layer (45 d e g / - 4 5 deg) square plate (Material 1) under 
impulsive loading, 

q=\0H(t — t0)sm — s i n — , f0=5/isec 
a a 

where H(t) denotes the Heavyside step function. Figure 4 
shows plots of the center deflection and normal stress with 
respect to time. Since no damping is accounted for in the 
present study, the wave does not damp out with time. 

Conclusions 

The exact form of the spatial variation of solutions are 
presented herein for two different lamination schemes. The 
results also bring out the significance of including the trans
verse shear strains on the transient response of composite 
plates. Although the analysis presented herein is valid only for 
rectangular plates of two different lamination schemes and 
boundary conditions, and sinusoidal distribution of the 
transverse loading, the results should be of interest to 
numerical analysts in validating their numerical methods, and 
to experimentalists in interpreting their experimental findings 
(see, for example, [24-28]). Of course, duplicating any 
mathematical boundary conditions in an experiment is often a 
difficult task. The boundary conditions in equation (8), for 
example, can be simulated in an experiment by making a v-
groove along the edges of the cross-ply plate to be tested, and 
then supporting the plate on knife edges so that motion along 
the edges is not restrained but motion perpendicular and 
transverse to the edges is restricted. On the other hand, 
simulation of boundary conditions of an experiment in a 
finite element model is relatively simple. With this in mind, 
the author has conducted finite-element analyses and 
preliminary results are included in [24]. It is also of practical 
importance to include damping, and nonlinearities due to 
large deflections and material behavior. The analysis 
presented herein can also be extended to certain shell theories. 

~i i i r 

'/ — w vs. (0 / -0) , E]/E2=2i, a/b=l 

• / ' / / — w and o vs. E^E j , a/b=l ,0°/90°-
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E,/E2 10 15 20 25 30 35 40 45 

Fig. 3 Effect of lamination angle, aspect ratio, and material or
thotropy on the solution of two layer plates under suddenly applied 
sinusoidal loading (q0 = 10N/cm2) 
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A P P E N D I X 1 
Elements of the Operator Matrix in Equation (7): 
Lu=Alldu+2Al6dl2+A66d22+Pdll, 

Ln=(Al2+A6fl)dl2+Al6du+A26d22, L , , = 0 , 

Ll4=Bndll+2Bi6di2+Bmd22+Rd„, 

Ll5 = (Bl2 +B66)dl2 +Bi6dn +B26d22 =L24, 

L21=2A2f>dn +A22d22 +A66dn +Pd„, L23 = 0 

L2i =2B26d[2+B22d22 +Bb6du +Rd„, 

Li3 = ~A44dn ~2A4idn ~Ai5d22 +Pd„, 

LM=AMd^ ~A4id2 

L3s = ~A45d, -A5Sd2, L44 =Dudn +2D]6d]2 

+ D6(td22~A44 + Idln 

L45 = (D12 +D66)dl2+Dl6du +D2f>d22 -A45, 

L5i=2D26dl2+D22d22+D66du +Id„-Asi 

where di=d/dxi,du = d2/dxidxJ (ij= 1,2), andtf,, = d2/dt2. 

Mn =M22 =M3i =P, M44 =M55 =/, 

M „ = 0 for/*/(/ , /• =1,2,...,5), 

F} =q, F, =0 for all other /= 1,2,4,5. 

Elements of the Coefficient Matrix in Equation (13): 

Cu=Aua
2+A66l3

2, Ci2 = (A]2+A66)al5 

C 1 3 =0, Ct4=a2Bn+B66l3
2, C15 = (B12 + B66)afl 

C22=A22t3
2+A66a

2, C2i=0, C24=CI5, 
C25 = B22 p

2 + B66 ex2, C33 = a2A44 + j32A55, 

C}4=aA44, Ci5=@A55, C44=Dna
2+D660

2+A4A, 

C45 = (Dn +D66)a(3, C55 =D66a
2 +D22/3

2 +A55. 

Elements of the Stiffness Matrix in Equation (17): 

Kn = (Ana
2 +A66(3

2), Kl2 = cxP(An +A66), 

Kn=0, Ki4=(a
2B16+l32B26)/h, Kl5 =2a/3B16/A, 

K22 = ( a M 6 6 +{32A22), K23 =0 , K24=2al3B26/fi, 

K25=(a2Bl6 + (32B26)/h, Kn ={02Asi +a2A44), 

K34=aA44/h, Kii=$Aii/h, 

K44=(a2D66 + p2D22+A44)/h
2, 

K45=a(3(Dl2+D66)/h
2, K55=(a

2Du+l32D66+A55)/h
2, 

Fi = Q,„,n Ft=F2=F4=F5=0. 
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Nonlinear Theory for Flexural 
Motions of Thin Elastic Plate 
Part 3: Numerical Evaluation of 
Boundary Layer Solutions 
The boundary layer solutions previoulsy obtained in Part 2 of this series for the 
cases of the built-in edge and the free edge are evaluated numerically. For the built-
in edge, a characteristic penetration depth of the boundary layer toward the interior 
region is given by 0.13 eh, eh being the normalized thickness of the plate, while for 
the free edge, it is given by 0.32 eh. Thus the boundary layer for the free edge 
penetrates more deeply toward the interior region than that for the built-in edge. 
The first-order stress distribution in each boundary layer is displayed. For the built-
in edge, the stress singularity appears on the edge. It is shown that, in the boundary 
layer, the shearing and normal stresses become comparable with the bending 
stresses. Similarly for the free edge, the shearing stress also becomes comparable 
with the twisting stress. It should be remarked that, in the boundary layer, the 
shearing or the normal stress plays a primarily important role as the bending or the 
twisting stress. But the former decays toward the interior region and remains higher 
order than the latter. Finally owing to these numerical results, the coefficients 
involved in the "reduced" boundary conditions for the built-in edge are evaluated 
for the various plausible values ofPoisson 's ratio. 

Introduction 

This series of papers [1, 2] deals with a comprehensive 
theory for flexural motions of a thin elastic plate in which the 
effect of finite thickness and that of small but finite deform
ation are taken into account. In developing the theory, the 
plate is treated as composed of two regions, one being the 
interior region away from the edge and the other the boun
dary layer region adjacent to the edge. In Part 1 [1], the 
higher-order equations were derived for the flexural motions 
in the interior region. In its subsequent paper, Part 2 [2], the 
boundary layer theory near the edge was developed and the 
reduced boundary conditions relevant to the higher-order 
equations were derived for the three typical edge conditions; 
built-in edge, free edge, and hinged edge. The concern of Part 
2 was mainly focused on the derivation of the reduced 
boundary conditions and explicit stress distribution in the 
boundary layer for each edge condition is left untouched. The 
purpose of this paper is to obtain the boundary layer solutions 
numerically and to display the resulting stress distribution in 
both cases of the built-in edge and the free edge. For the 
hinged edge, no boundary layer is assumed to develop and 
therefore this case is excluded here. Also the numerical values 
of the coefficients involved in the reduced boundary con-
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ditions for the built-in edge are evaluated for the various 
plausible values of Poisson's ratio. In this paper as well, the 
same notations are used in common with the previous two 
papers. 

As already seen in Part 2, the boundary layer problem and 
the interior problem are mutually interrelated. Indeed the 
boundary layer solutions affect the interior solutions through 
the reduced boundary conditions. Conversely, the interior 
solutions affect the boundary layer solutions through their 
values at the boundary of the interior region. For a given plate 
problem, the boundary layer problem is solved after the 
interior problem is first solved under the appropriate reduced 
boundary conditions to that problem. As far as the first-order 
boundary layer problem is concerned, however, this in
terrelation is rather simple because the boundary layer 
solutions merely undergo a change of scale factor determined 
by the interior solutions at the boundary. In this paper, we are 
mainly concerned with the numerical results of the first-order 
problem. The computations for the higher-order problems 
can be carried out, if necessary, in the same way as presented 
in this paper. 

The boundary layer solutions1 <pm for the built-in edge and 
\fw for the free edge decay exponentially away from 
the edge toward the interior region. Being consistent with the 
earlier assumption made in Part 2, a penetration depth of the 
boundary layer toward the interior region is of the order of 

Here the penetration depth is roughly defined as the width by which (5*1' or 
P- ' decays by the factor e. 
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the normalized thickness of the plate eh.1 For the built-in 
edge, the characteristic penetration depth is given by 0.13 eh, 
while for the free edge, it is given by 0.32 eh. Thus the 
boundary layer for the free edge penetrates more deeply 
toward the interior region than that for the built-in edge. The 
first-order stress distribution in the boundary layer is 
displayed for both edge conditions. The pattern of dis
tribution in each condition remains unchanged except the 
scale factor aforementioned whatever the interior solutions 
may be. In this sense, the pattern of distribution is charac
teristic of each edge condition. For the built-in edge, the stress 
singularity appears on the edge (more specifically, on the 
intersections between the plate surfaces and the edge surface). 
Of course, the stresses near the intersections are mainly 
determined by this stress singularity. Except in the vicinity of 
the stress singularity, the bending stresses Kyy and Kxx do not 
differ appreciably from those at the boundary of the interior 
region. But it is displayed that, in the boundary layer, the 
shearing stress Kyz and the normal stress Kzz become com
parably important with the bending stresses and they decay 
toward the interior region. Similarly for the free edge, on the 
other hand, it is also displayed that the shearing stress Kxz 

becomes important as well as the twisting stress Kxy. Thus in 
the boundary layer, the shearing or the normal stress plays a 
primarily important role as the bending or the twisting stress 
and cannot be essentially neglected. 

Numerical Results 

1 Case of Built-in Edge. In Part 2, the first-order boundary 
layer problem for the built-in edge condition is posed for <pm 

as the plane strain problem: 

#Ji,,+2*\(JJ(f+#&r = °. (1) 

with the boundary conditions 

r, = 0, (1 - a)#J', - o#$ = 2a/(l - a)wg> f, 

(l-ff)#J», + (2 -a )£ !& = 0, 

^ -oo ,^<D^0 , and f = ± 6 / 2 , <̂1) = ̂ <i)=0, (2) 

where vv ĵ, is evaluated at y = 0 in the interior region. The 
explicit procedure to solve this problem by the Laplace 
transform method is given in Appendix B of Part 2. This case 
corresponds to that with a = [2u/(l -a)2}w{Q

y\ and (3 = 0. 
First <pi') and so^'at i) = 0 are assumed to be 

^(1,(0,f) = 
( l - o ) 

^:'(o,n= 
2ah2 

+ T 

„(0): (l-aF'4n£/HCOs[«7r(j+i 

(3) 
with 

0<-"(f//O = (1 /2 - f / / /)A+ ' - (1/2 + f / /0 x + ' + (X+ l ) f / / i , 

</>W(f//i) = ( l / 2 - f / / i ) x - ( l / 2 + f/ / !)
x + Xf//i, (4) 

where A'„, B'„{n= 1,3,5,...), A's, and B's are real constants to 
be determined later and X (0 < X < l)2 denotes the power of 
the stress singularity at the corner. This X is given by the 
solution of the following characteristic equation for the 

In this paper, X is used for the power of the stress singularity, not for Lame' 
constant. 

corner singularity with one side built-in and the other free (see 
the Appendix): 

sin2(7rX/2) = 4(1 - <T)2/(3 - 4a) - X2/(3 - 4a). (5) 

According to the aforementioned Laplace transform method, 
<pm can easily be obtained by the inversion formula, which 
can be expressed in the form of the Papkovich-Fadle eigen-
function expansion [3,4]: 

2a/i3 

- rV
(0> 

-.2 -yy 

D C**,t(flexp(-tf/tr;/A) 

+ complex conjugate, 

withCV and** (k= 1,2,3,...) given by 

A cot2(<7,/2) cr_, (2-a) 

(6) 

C, 
„=U,5 [ ? * - ( • H-KYY (-L (1 -a) J 

— (nir)2]B') 
- a ) ' J «J - fe ! + 

r L2sinW2) - 2 ( f ) ^ ) > i 

(^L-cot2(^)#»to)lfi' + r $2,1' 
l_2sin2(<^/2) 2QV 

< M 0 = cos (qk/2) sin (qk f//i) 

-2sm(qk/2Wh)cos{qk$/h),{k=\,2,l,...) (7) 

where qk ( ^ 0; k = 1,2,3,...) are the roots of the equation sin q 
= q in the first quadrant of the complex q plane and they are 
ordered as 0 < Re q, < Re q2 ... • The real coefficients A'n, 
B'n (n= 1,3,5...), A's, and B^ involved in Ck are determined by 
the following complex simultaneous equations in infinite 
dimensions: 

" = 1 , 3 , 5 

co t 2 (^ /2 ) 

Iql-(nv)2] 

qk/2) CY 3 (2-<r) "I 

-cot2(-^)^(<7,)]/i; ^ i . f to*) 
L 2s\n2{qk/2) 

2( f t /2) 

1 

2qj 
,{k= 1,2,3,...), (8) 

where the definitions of 4>\s}(qk) and 4>\s)(Qk) (/= 1,2) are 
referred to Appendix B of Part 2. By virtue of these 
equations, Ck can take a simpler form as 

C„ 
„ = i,3,5 [ « * - ( « T ) 

+ 2 

v 2cot2fe/2) r 3 (2-ff) I 

-cot2(|)^»(ft)]^i+i. (9) 
2sm2(qk/2) Ql 

The simultaneous equations in infinite dimensions (8) are 
solved by truncating them into finite dimensions. Setting 

410/Vol. 49, JUNE 1982 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 Tabl 

Al 
A3 

AS 

A; 
A9 

Ah 
A;3 

B; 
B

3 

BS 

BI 
% 
Bii 
B;3 

As 

"s 

V s 

X =- 48 

- 0 . 3 5 4 7 E - 1 

- 0 . 1 9 9 2 E - 2 

- 0 . 2 0 4 8 E - 3 

- 0 . 6 5 3 5 E - 4 

- 0 . 2 7 2 6 E - 4 

- 0 . 1 3 3 7 E - 4 

- 0 . 7 3 1 2 E - 5 

0 .8496E-1 

O.2507E-2 

0 .2726E-3 

- 0 . 3 2 2 9 E - 5 

- 0 . 4 8 2 2 E - 4 

- 0 . 5 0 6 8 E - 4 

- 0 . 4 4 5 6 E - 4 

0.2381E+0 

-O.1330E+O 

-0 .1790E+1 

e of coefficients A'„,B'„ 

X = 52 

- 0 . 3 5 5 9 E - 1 

- 0 . 1 1 0 4 E - 2 

- 0 . 2 0 6 1 E - 3 

-0 .6586E-4 

- 0 . 2 7 5 2 E - 4 

- 0 . 1 3 5 2 E - 4 

- 0 . 7 4 1 1 E - 5 

0 .8519E-1 

0 .2542E-2 

0 .2869E-3 

- 0 . 4 5 4 2 E - 5 

- 0 . 4 3 3 7 E - 4 

-0 .4740E-4 

-0 .4222E-4 

0.2388E+0 

-0 .1335E*0 

-0 .1789E+1 

N = 56 

- 0 . 3 5 6 6 E - 1 

- 0 . 1 1 0 8 E - 2 

- 0 . 2 0 7 1 E - 3 

-0 .6628E-4 

- 0 . 2 7 7 3 E - 4 

- 0 . 1 3 6 5 E - 4 

- 0 . 7 4 9 0 E - 5 

0 .8537E-1 

0 .2570E-2 

0 .2984E-3 

- 0 . 1 0 8 5 E - 4 

- 0 . 3 9 4 0 E - 4 

- 0 . 4 4 7 0 E - 4 

- 0 . 4 0 2 9 E - 4 

0.2394E+0 

-0 .1339E+0 

-0.1788E+1 

A's, and B$ 

X - 60 

- 0 . 3 5 7 2 E - ] 

-0 .1111U-2 

-0 .2079I - -3 

- 0 . 6 6 5 9 E - 4 

- 0 . 2 7 8 9 E - 4 

- 0 . 1 3 7 4 E - 4 

- 0 . 7 5 5 0 E - 5 

0 .8551E-1 

0 .2592E-2 

0 .3074E-3 

0 .1582E-4 

- 0 . 3 6 2 6 E - 4 

- 0 . 4 2 5 6 E - 4 

- 0 . 3 8 7 3 E - 4 

0.2398E»0 

-0 .1342E+0 

-0 .1787E+1 

forff = 1/3 (E-n = 10 

X = 64 

- 0 . 3 5 7 7 E - 1 

- 0 . 1 1 1 4 E - 2 

- 0 . 2 0 8 5 E - 3 

- 0 . 6 6 8 IE-4 

- 0 . 2 8 0 0 E - 4 

- 0 . 1 3 8 6 E - 4 

- 0 . 7 5 9 2 E - 5 

0 .8562E-1 

0 .2608E-2 

0.3142I--3 

0 .1953E-4 

- 0 . 3 3 9 1 E - 4 

- 0 . 4 0 9 2 E - 4 

- 0 . 3 7 5 5 E - 4 

0 .2401F*0 

-0 .1344E+0 

-0 .1786E+1 

X = 68 

- 0 . 3 5 7 9 E - 1 

- 0 . 1 1 1 5 E - 2 

- 0 . 2 0 8 8 E - 3 

- 0 . 6 6 9 4 E - 4 

- 0 . 2 8 0 7 E - 4 

- 0 . 1 3 8 4 E - 4 

- 0 . 7 6 1 6 E - 5 

0 .8S68E-1 

0 .2619E-2 

0 .3186E-3 

0 .2198E-4 

- 0 . 3 2 3 4 E - 4 

-0.39B3F.-4 

- 0 . 3 6 7 5 E - 4 

0.2403E+0 

-0 .1346E*0 

- 0 . 1 7 8 5 E * ! 

"") 

N = 72 

- 0 . 3 5 8 0 E - 1 

- 0 . 1 1 1 5 E - 2 

- 0 . 2 0 8 9 E - 3 

- 0 . 6 6 9 7 E - 4 

- 0 . 2 8 0 8 E - 4 

- 0 . 1 3 8 5 E - 4 

- 0 . 7 6 2 3 E - S 

0 .8571E-1 

0 .2623E-2 

0 .3206E-3 

0 .2312E-4 

-0 .3160E-4 

-0 .S930E-4 

- 0 . 3 6 3 5 E - 4 

0.2403E+0 

-0 .1347E+0 

-0 .1784E+1 

1(T r-

10° r 

10° " 

Fig. 1 

other terms than the first 2N unknowns A,',, B'n 

(n= l,3,5,...,2/V-3), A's, and B's to be zero, and taking the 
first N complex equations (k= 1,2,3,...,N), the real 
simultaneous equations for 2N unknowns are solved. In
creasing the number of unknowns 2N, the coefficients are 
calculated until convergence is reached. In numerical com
putation of the integrals in 4>\%qk) and 4>\s){qk)(i=\,2), 
Simpson's rule is employed with the division 4000 in the 
interval 0 < \/h < 1/2. For a plausible value of Poisson's 
ratio a = 1/3 (X = 0.68998353 from (5)), Table 1 shows how 

the first 16 coefficients A,',, B'n (n= 1,3,5,...,13), A's, and B's 

converge as N increases from 48 to 72. It is found from this 
that the greatest terms A's and B's converge with the relative 
error or order of 10 ~3. The accuracy of computation for each 
TV is also checked as follows. From the boundary conditions at 
f = ±h/2, A,',, B'n («= 1,3,5,...), A's, and B's must satisfy the 
relations 

and 

£ ,̂; + (i-XM;/2-s;=o, 

£j B'n+(\-\/2)B^S-B=0. 

(10) 

(11) 

Substituting the coefficients calculated into S^ and SB (the 
upper limit of the summation is then taken as N— 1 instead of 
infinity), it is found that \S^ I always remains less than 
3 l x 110 7, while \SB I is less than 3 x 10~4. Comparing S'A 

and SB with the respective greatest term in the left-hand side 
of (10) and (11), the relative error is considered to be of the 
order of 10~3. In addition to this, the ratio of A's/B's is also 
checked. From the analysis of the stress singularity at the 
corner (see Appendix), A's/B's must converge to - 1.77750 for 
a = 1/3. As can be seen from Table 1, this ratio is regarded to 
converge to the limiting value with the relative error 3 x 
10~3. Thus it is found that this computation is correct with 
the relative error of the order of 10 - 3 . Figure 1 shows how 
\A'n I and \B'n I calculated at N=12 decay as n increases. It 

indicates that \A^ I decays as n~4 , while \B'n I decays as n~3. 
Since they decrease more rapidly than n'2, the Fourier series 
in<5(1>(0,f)and^ W (0,f) converge uniformly over - 1 / 2 < f 
< 1/2. Furthermore the stresses derived from them also 
converge uniformly. 

We now seek the stresses derived from </>(1). Noting that </>(1) 

is odd with respect to f, therefore 4>(^ ar*d </>!$ a r e °dd, while 
(t>\\\ is even, these stress components are displayed in Figs. 2-4 
over the half range of f, i.e., 0 < £/h < 1/2. In these figures, 
attention should be paid to the stress singularity at the corner 
•q = 0 and $/h = 1/2. Here the stresses along ?? = 0 are 
calculated by (3), not by (6), since the term by term 
differentiation of (6) is found in admissible. From (6), </>(l) 
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?/h = 0 

7/h = 0 

and its derivatives decay exponentially as -q/h increases. A 
characteristic penetration depth is determined by the inverse 
of Re <7i (= 7.5) of the most slowly decreasing function 
exp( -g , r)/h) and therefore -q/h ~ 0.13, i.e., y ~ 0.13 eh. 
This result is consistent with the earlier assumption made in 
Part 2 that the penetration depth of the boundary layer 
toward the interior region is of the order of the normalized 
thickness eh. 

It should be remembered here that the actual first-order 
stresses in the boundary layer are given by (17) and (22) in 
Part 2: 

Km 

m 

2c[{/h + a/(l-a)h2<l>[ll], 

- 2ca/(l - a)h2 <fi[\\, &g = 2c<r/(l - a)h2 «<» , 

2ca\ph + a/(l - a)h2(^\ + #&)], 
(12) 

where c= -hw^y/(l - o) represents the stress K$ at the 
upper surface £/h = 1/2 as r)/h — c° (i.e., at the boundary of 
the interior region). From these expressions, the first-order 
stresses in the boundary layer depend on the interior solutions 

through the scale factor w™. Except for this factor, the 
pattern of the stress distribution is characteristic of the built-
in edge condition. In Fig. 5 and Fig. 6, K^ and K^J] are 
displayed in which c is set equal to unity and a is 1/3. The 
contribution of ct>[\\ and <j>m

v to A $ and K^ is small, because 
of the factor a/(l - a), compared with the term \/h except in 
the vicinity of the corners -q - 0 and f//i = ±1 /2 . But near 
the corners, K$ and KQ> are determined mainly by the stress 
singularity. Noting that for a = 1/3, A^' = -ch2<j>m

t, and 
RS£ = ch2 c/>(Ii,, the similar graphical representations for 
K$ and K^ are given by Fig. 3 and Fig. 2, respectively. It is to 
be remarked here that the first-order shearing stress Ktyl 
and normal stress KS£ become comparable with the bending 
stresses K§) and K$ and decay toward the interior region. 
Thus it is found that, in the boundary layer for the built-in 
edge, the shearing and normal stresses play an essential role as 
the bending stresses. 

Proceeding to the second-order problem, the boundary 
layer solution (3(2) is sought in a similar manner to that for 
<pm. This case corresponds to the case with a = [2o/(l - a)2] 
w'J,}, and/3 = - [ 2 ( 2 - < J ) / ( 1 -a)2]w^yy\n Part 2. To obtain 
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Ai' 
A 3 

A 5 

A 7 

A 9 

Ai'l 

A 1 3 

B l 

B 3 

B 5 

B 7 

«9 

Bil 
B 1 3 

A S 

B S 

AS / BS 

Table 2 Table of coefficients A'„, B„ 

N = 48 

-0.2149E-2 

0.1157E-3 

0.2369E-4 

0.7617E-5 

0.3152E-5 

0.1528E-S 

0.8247E-6 

0.4378E-2 

0.1603E-3 

0.6604E-4 

0.3579E-4 

0.2190E-4 

0.1448E-4 

0.1011E-4 

0.1287E-1 

-0.7237E-2 

-0.1778E+1 

N = 52 

-0.2137E-2 

0.1163E-3 

0.2383E-4 

0.7675E-5 

0.3182E-5 

0.1545E-5 

0.8357E-6 

0.4357E-2 

0.1572E-3 

0.6480E-4 

0.3512E-4 

0.2149E-4 

0.1421E-4 

0.9925E-5 

0.1279E-1 

-0.7193E-2 

-0.177SF.*! 

N = 56 

-0.2128E-2 

0.1168E-3 

0.239SE-4 

0.7724E-5 

0.3207E-5 

0.1560E-5 

0.8452E-6 

0.4340E-2 

0.1545E-3 

0.6371E-4 

0.3454E-4 

0.2113E-4 

0.1396E-4 

0.97S6E-S 

0.1272E-1 

-0.7154E-2 

-0.1778E+1 

Ag, and B8-

N = 60 

-0.2119E-2 

0.1172E-3 

0.2406E-4 

0.7768E-5 

0.3229E-5 

0.1573E-5 

0.8536F.-6 

0.4325E-2 

0.1522E-3 

0.6274E-4 

0.3402E-4 

0.2080E-4 

0.1374E-4 

0.9601E-S 

0.1266E-1 

-0.7120E-2 

-0.1778E+1 

forcr = 1/3 (E-n= 10 

N = 64 

-0.2111E-2 

0.1176E-3 

0.2416E-4 

0.7808E-5 

0.3250E-5 

0.1585E-5 

0.8612E-6 

0.4311E-2 

0.1501E-3 

0.6186E-4 

0.3353E-4 

0.2050E-4 

0.1354E-4 

0.9455E-S 

0.1261E-1 

-0.7090E-2 

-0.1778E+1 

N = 68 

-0.2103E-2 

0.1180E-3 

0.2426E-4 

0.7845E-5 

0.3269E-5 

0.1595E-5 

0.8683E-6 

0.4298E-2 

0.1480E-3 

0.6102E-4 

0.3307E-4 

0.2O21E-4 

0.1334E-4 

0.9314E-S 

0.1255E-1 

-0.7060E-2 

-0.1778E+1 

"") 
N = 72 

-0.2096E-2 

0.1183E-3 

0.2434E-4 

0.7882E-5 

0.3287E-S 

0.1607E-5 

0.87S3E-6 

0.4285E-2 

0.1460E-3 

0.6019E-4 

0.3262E-4 

0.1992E-4 

0.1315E-4 

0.9173E-5 

0.1250E-1 

-0.7032E-2 

-0.1778E+1 

Table 3 Table of coefficients K^, K2, and 
Poisson's ratio 

K i 

K2 

K3 

a = 0.25 a = 0.3 0 = 0.32 

0.006627 0.01064 0.01268 

0.01058 0.01349 0.01476 

0.2772 0.2992 0.3089 

*3 for various values ol 

o = 1/3 o = 0.35 

0.01420 0.01630 

0.01566 0.01679 

0.3156 0.3245 

2 Case of Free Edge. Next we examine the boundary layer 
solutions in the case of the free edge. There first appears the 
torsion boundary layer. The stress function \p-1) has already 
been given in Part 2 as 

#» lw(%h2 (-1)" 
M=0 ir3(2m + \)1 

X [ir(2m + l)f//z]exp[ - ir(2m + l)v/h] = w^h2 i/<(l>, (15) 

<Pi2),A%, B;;(n = l,3,5,...),Af, andBf are calculated. Table2 
shows the first 16 coefficients for a =1 /3 as N varies from 
48-72. Also Fig. 1 shows the decay behavior of \AH I and 
I5„" I calculated at N=12 as n increases. In this computation 

as well, the accuracy is assured at the same level as for A'n, £„', 
A,, and B's with the relative error of the order of 10~3. The 
second-order stresses would be computed from these 
numerical values, but they are omitted here. 

Finally owing to these numerical results, the coefficients KX , 
K2 , and K3 involved in the reduced boundary conditions for the 
built-in edge can be evaluated: 

24a2 r 2, 

K2 = 

(n-irf 
~c2Bi 

•]• 
24a(2-a) 

Ki 

40(1 - a) (1 

8 + CT 24o(2-o) 

40(1 - a) + "(1 

of L5,5(™)2 ClA']' 
{2-a)r Y"\ Bn ,n Graphical representations for Kty and 
_a\2 [ ^ (nit)2 ~°2 s > (13) and Fig. 8 where c is set equal to unity. 

where wjjj, is evaluated at y = 0 in the interior region. This 
stress function also decays exponentially as T\/h increases and 
its characteristic penetration depth is given by r\/h ~ 0.32, 
i.e., y ~ 0.32 eh. From this, the penetration depth for the free 
edge is about three times longer than that for the built-in edge. 
Thus the boundary layer for the free edge penetrates more 
deeply toward the interior region than that for the built-in 
edge. 

Let us calculate the stresses in the boundary layer. The first-
order stresses in this case are given by (17) and (22) in Part 2: 

K$ = c(2f//i + h+<$ K% = - ch^],\ 

K% = K<» = KW=0, K$=-2(1+ o)w%t;, (16) 

where c = -hw% represents the stress Kty at the upper sur
face $/h = 1 /2 as -q/h — oo and w^l is also evaluated at y = 0 
in the interior region. In this free-edge condition, the first-
order shearing stress K[^ appears only in the boundary layer 
and it becomes important as well as the twisting stress Kty. 
Graphical representations for Kty and K$ are shown in Fig. 7 

with 

= JQ €«w«)rf$, and c2 = j o ' / 2 to<$(8dl; (14) 

where for example c, = -0.01471 and c2 = -0.04713 for a 
= 1/3. In Table 3, these coefficients are given for the various 
plausible values of Poisson's ratio. 
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APPENDIX 

Here we briefly summarize the results on the stress 
singularity at two corners TJ = 0 and f = ±h/2. A detailed 
discussion is given in reference [5]. 

At the corners, there appears the same type of stress 
singularity as that at the vertex of a right wedge with one side 
built-in and the other free in a plane strain. Although, in the 
present formulation, the displacements are prescribed along TJ 
= 0 over -h/2 < f < h/2, there appears the stress 
singularity which satisfy the homogeneous boundary con
ditions, i.e., no displacements along TJ = 0 and no stresses 
along f = ±h/2. In the following, only the corner 77 = 0 and 
f = h/2 is considered as an example. 

We take the local polar coordinate system r and 6 with the 
origin at the corner 77 = 0 and f = h/2 so that the free edge 
corresponds to 6 = 0 and the built-in edge to 8 = - TT/2. Near 
the corner, the local behavior of <5(1) for the stress singularity 
can be expressed as 
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1 

-Xcos(7rX/2)]B. (19) 

^(i)=,.x+i/(0) = /A+i ja lSin[(X+l)0]+a2cos[(X+l)0] Thus the asymptotic expressions for ^(1) and $J> near the 
• r / , , -.m , „-, , U , | n ^ corner along the edge JJ = 0 are given by 

+ tf3sin[(X- l)6lJ + <74Cos[(X- 1)6]}, (17) 

where a,- (/= 1,2,3,4) are constants which should be deter- <PW = -2rx+i [\A/Bcos(irX/2) + sm(ir\/2)]B, 
mined so as to satisfy the homogeneous boundary conditions ^u) = r~ I ̂ m_ _ 2 ^ [(X2 - l)^4/Bsin(7rX/2) 
along both sides in the vicinity of the corner. On introducing '"' 
this expression into the stress and displacement components in 
the plane strain case, and imposing the boundary conditions „. , .« . , . „ lU 
, v

 n * n n J n * f l / i \ » u Since r = h/2 - f along 11 = 0, comparison of these expressions 
(<V = am = O.atfl = 0 and u = H, = 0 at 0 = - ,r/2) the w ^A'{\/2- f/A)^> and a^B'{\/2- ^ ) x in (3), a 
nontrivial condition for fl, yields the characteristic equation 2 ' ( , £ 
(5) for X. Then the constants a,- are determined as " L •-- ' J -s 

a ,=(X- l )y4 , a3 = - ( X + l ) / l , a2 = -a4=B, A's __ MABcos(7rX/2) + sin(7rX/2) 

a n d B; (X2-l)/l/iSsin(irX/2)-Xcos(irX/2)' ( ) 

/ l / 5 = [X + 2(l - r/)]cot(7rX/2)/((X+ 1)[X- 1 +2(1 - a)}. (18) and similarly A / / 5 S " is given by (20). 
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1 Introduction 

The Axisymmetrical Steady-State 
Response of Internally Damped 
Annular Double-Plate Systems 
The axisymmetrical steady-state response of an internally damped, annular double-
plate system interconnected by several springs uniformly distributed along con
centric circles to a sinusoidally varying force is determined by the transfer matrix 
technique. Once the transfer matrix of an annular plate has been determined 
analytically, the response of the system is obtained by the product of the transfer 
matrices of each plate and the point matrices at each connecting circle. By the 
application of the method, the driving-point impedance, transfer impedance, and 
force transmissibility are calculated numerically for a free-clamped system and a 
simply supported system. 

This paper presents an analysis of the axisymmetrical 
steady-state response of an internally damped, annular 
double-plate system interconnected by several springs 
uniformly distributed along concentric circles under a 
sinusoidally varying force, in which the transfer matrix 
method is used. Though a number of papers are available on 
the vibration of circular or annular plates, only a few papers 
have been presented for the vibration and the forced response 
of double-plate or multiplate systems. Kunukkasseril and 
Radhakrishnan [1] studied the free vibration of an elastically 
connected, rectangular multiplate system, and Kunukkasseril 
and Swamidas [2, 3] also studied elastically connected, cir
cular double-plate or multiplate systems. Chonan [4, 5] 
studied the free vibration of circular or annular multiplate 
systems subjected to radial tension. However, these studies 
were confined to undamped double-plate or multiplate 
systems interconnected by uniformly distributed springs, and 
no papers have been presented for the response of the damped 
annular double-plate systems reported here, except for the 
study of Swamidas and Kunukkasseril [6] treating an un
damped circular or annular double-plate system elastically 
connected along concentric circles. Although there are many 
studies of composite and sandwich plates, which are collected 
in the monograph of Bert [7], these are not directly concerned 
in this study. 

For the purpose of this study, the Mindlin equations of 
transverse vibration of an internally damped annular plate are 
written in a matrix differential equation of the first-order by 
use of the transfer matrix of the plate. The matrix is obtained 
conveniently by a series type solution to the matrix equation 
and the steady-state response of the system is determined by 
the product of the transfer matrices of each plate and the 
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point matrices at each connecting circle. In this paper, elastic 
moduli of internally damped plates and springs are assumed 
to be complex quantities. This assumption is justified by the 
results of experimental measurement [8]. 

By the application of the present method, the driving-point 
impedance, transfer impedance, and force transmissibility are 
calculated numerically for a free-clamped, annular double-
plate system and a simply supported, annular double-plate 
system interconnected by several springs of the same stiffness 
located at equal radial intervals. 

The transfer matrix method of this paper is very simple and 
clear as an analytical process, and has significant com
putational advantages [9, 10]. The method is also applicable 
for annular double-plate systems governed by partial dif
ferential equations for which separation of variables is 
possible, including an unsymmetrical response of the system. 

2 Mindlin Equations of an Internally Damped An
nular Plate and the Solution 

With the outer and inner radii denoted by a and b, 
respectively, the polar coordinates (/•, 6) are taken in the 
middle surface of an annular plate. The steady-state 

I f 

( 1 ) ( 2 ) 

Fig. 1 Annular double-plate system driven by a sinusoidally varying 
concentric force 
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deflection, moments, and forces of the plate under a 
sinusoidally varying force are written as Mr=(l+j6E)(-^-+—+), Ml) = {\+jbE)(V^~+ - i ) 

\ a-q T] / v at] 7] / 

w* =awe /" (M;,M;) = — ( M r , M B ) e " " 6{\-v)K2 ( dW \ 
(5) 

Q*^—rQr^\ F* = —t-Fe1"' (1) 

where the variables w, Mn M0, Qn and F without the 
asterisk* are all dimensionless quantities. The quantity D is 
the flexural rigidity of the plate expressed as D = £/i3/12(l -
v2). For simplicity of the analysis, the following dimensionless 
variables are also introduced: 

a \ a / 

in terms of the transverse deflection W and the angular 
rotation \p of the normal to the middle surface in radial 
direction. The quantity K2 is the shear coefficient which 
assumes the value ir2/12. 

Upon eliminating the variable M„, (4) and (5) are written as 
a matrix differential equation 

4-{Z(v)}=lA(r,mZ(T,)} (6) 
dr\ 

where 

X4 = 
pha*a2 

D 
(frequency parameter) (2) 

[Z(r,)} = {W^M,Qr 

and 

[A(v)] = 

0 - 1 

0 -± 
V 

\-v2 

0 ( l + y 8 £ ) — — -
T 

X4 0 

a2X4 

12 

0 

1 

1 +J8a 

\-v 

0 

6(\-V)K2{\+jba) 

0 

>? 

(7) 

(8) 

where p is the mass per unit volume and co is the circular 
frequency. The Young's modulus and shear modulus of in
ternally damped plate are considered to be the complex 
quantities 

E=E(l+jSE), G = G(l+j5G) (3) 

where E and G express the real parts of E and G, respectively, 
and bE and 5G are constants representing the ratios of the 
imaginary to the real parts of them at any frequencies u>. 

The equations of axisymmetrical vibration of the plate 
based on the Mindlin plate theory are written as [11, 12] 

dQr Qr 
-f- + — +X4PF=0 
a-q 7) 

The state vector j Z (r\) J is expressed as 

lZ(r,)}=[T(r,))lZ(r,0)} {r,>r,0) (9) 

by use of the transfer matrix |T(ij)]. The substitution of (9) 
into (6) yields the equation 

d 

drj 
[T(r,)] = [A(r,)][T(ri)] (10) 

The matrix [T{r/)] is determined by the power series solution 
to (10) as follows: 

[r(T,)]=exp([M(r,)]) 

= U] + ^{M(n)}+^lM(n)}
2 + . (11) 

where 

[M(rj)]=l \A(rj)]dii 

0 

0 

0 •(1+J6E)-

-v 

— vln-q 

\-v2 JX4 

12 

1 +J&E 

•q — (1 — p)lnij 

6 ( l - . ) ^ 2 ( l + i 5 c ) 

0 

n 

- I n 17 

(12) 

dMr Mr -Mg 
-Q r + 1 yX 4 ^ = 0 (4) 

drj rj 

The components of the moment and shearing force are given 
by 

Numerical difficulty arises in the calculation of [T(T])] given 
by (11) if the radial interval is too long. However, it can be 
overcome by subdividing each radial interval into a number of 
small intervals and calculating the transfer matrix in each 
interval. The entire structure matrix is obtained by assembling 
the matrices in these intervals. 
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3 Axisymmetric Response of an Annular Double-Plate by using the point matrices 
System to a Sinusoidally Varying Concentric Force 

Figure 1 shows an annular double-plate system in
terconnected by several springs uniformly distributed along 
concentric circles. At the radius -q = 17 „ where the two plates 
are interconnected by a spring, we have the continuity and 
equilibrium relations 

Wp(V„+0) = Wp (r,„ - 0), +p {r,„ + 0) = ^ (,„ - 0) 

M,,/,(7)„+0) = M ^ ( r , „ - 0 ) + ( - l ) " s ; , „ (^ 2 ( J , „ ) -^ 1 ( ' ?„ ) ) 

Qr,P (n„+0) = Qr,P ( IJ„ - 0) + ( -1 )%.„ { w2 (v„) - wx (,„)) 
(13) 

where KP_„ and k'pn express the translational and rotational 
stiffnesses of internally damped spring, respectively, which 
are also assumed to be the complex quantities 

Z-> „, (1) 

[*„]« = 

[K'B 

1 
0 

0 

. ( 1 + A , n ) K p , n 

0 
0 

0 +A,«)fP,« 

o 
l 

(l+A',n)Kp,„ 

o 

o 
0 

(i+y'<V,„) < „ 
o 

are also written as 

Z, 

2,,, J U F - 0 ) 

0 0 
0 0 

1 0 
0 1 

0 0 
0 0 

0 0 
0 0 

F, 

0 2,„ J ilF + 0) 

by use of the force vector (F, 
radius, the response of the system is expressed as 

(18) 

(19) 

0 00 F)T. At an arbitrary 

Ti 0 

0 T2 
n 

- i , i ) ' = ' 

A", 

- * 2 ^ 2 

T, 0 

o r2 

Zi . i 

<1/-1,1/) L -^2,1 </3) 

and 

r , 77 

f2' f 2 </3,l) 

Zl . l 

Z2 , i J (3) 
( > J F » ? = ? 0 ) (20) 

Z\,m 

Zl.m <l) 

£>„ 
- K* ( 1 + A , „ ) = Kp,n ( 1 + J&H,„ ) 

«P,« = jr K'n*(i +y'5«',«) = «;,„ ( i +y'5«',«) 

0 

0 

T2 

n T2 

n 
( l m - l , 1 > , = " 

(14) 

( I F , I ) 

A:, 

•f, f f 

n T2_ 

-K{ 

K2 

T , 0 

0 T2 

Z\,n 

( i f . l ) L Z2ill J (v/r + 0) 

( l i -1,1/) L ^2,n J (VF + 0) 

( 1 ^ I » > I J F ) (21) 

where [T' /,](, / ;.,) and [T^]^> r j) marked with an overbar, 
express the products of the transfer matrices and the point 
matrices. Upon substituting the equations obtained by taking 
T) = r]F - 0 in (20) and rj = 1 - 0 in (21) into (19), we have 

( i ) n f2 W,IF) 

Z I , I 

22,1 W) 

(22) 

Here, the subscripts p = 1, 2 express the upper and lower 
plates, respectively. When the upper plate is driven by a force 
F uniformly distributed along a concentric circle of radius -q 
= rjF, we have the relations 

Wl(rlF + 0)=Wl(7lF-0), iMijF + 0) = 0 , ( ^ - 0 ) 

MrAlF + 0) = Mr,l(.VF-0), QrAVF + 0) = Qr.dVF-0)+F 

(15) 

The boundary conditions of each plate are written as 

Mr=Qr=0 at a free edge 

W=Mr=0 atasimplysupportededge 

W=\p = Q at a clamped edge (16) 

The relations (13) can be written as 

f Zi,n + i 

(l„+0) -K{ 

-K[ 

K2 

Zl ,„ 
(17) 

A half of the elements of IZ 1,/V+I ^ 2 , / V + l 1(1) and \Z\,\ Z2 , i }(/}) 

are zero by a given set of the boundary conditions (16), and 
other unknown elements are determined by (22). The 

Table 1 Resonant frequencies of a free-clamped, undamped annular 
double-plate system Interconnected by a spring at the free edge: v = 0.3, 
(3 = 0.2, «! =0.05, a2laf = 1.0, K = 200, K' = 0 

( l „ - 0 ) 

Number 
of d i v i s i o n 

1 

4 

8 

12 

20 

Exact 
s o l u t i o n 

Ai" 
2.395 

2 .283 

2 .273 

2 .272 

2 . 2 7 1 

2 . 2 7 1 

A'i" 

4 . 720 

4 .585 

4 .583 

4 .582 

4 .582 

4 .582 

# ' 
5.801 

5 .610 

5 .609 

5.609 

5.609 

5 .609 

X2"» 

7.648 

7.564 

7.562 

7.562 

7 .561 

7 .561 

xV 
9 .543 

9 .431 

9.434 

9.434 

9.434 

9.434 
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axisymmetrical response of any annular double-plate system 
is determined by (20) and (21). 

The normalized transfer impedance is expressed as 

•2D, i j F F 
\Zp{r,)\- (23) 

(l~P2)Dp\p\W(v)\ 

The driving-point impedance is given only by replacing the 
variable i) in (23) with the variable r)F. The force trans-
missibility at the supports is given by 

l TR,P I 
r\FD,F 

(24) 

The method of this paper can be applied to annular double-
plate systems under any combination of boundary conditions. 
Here, two examples will be explained. 

Example 1: A Free-Clamped Annular Double-Plate 
System Driven at the Free Edge 

Consider a free-clamped annular double-plate system 
interconnected by several springs of the same stiffness located 
at equal radial intervals. Upon taking t] = t\F = 1 in (20), we 
have 

N n K, -AT 

- Kk Ko 

T , 0 

0 T2 ( l / - l ' ' i ) 

(25) 
(U) 

By the boundary conditions (16), we have 

1,34 * 1,33 1 1,34 

^1,43 7 , , r, 77, 43 ' 1,44 

72,33 7 2 i 3 4 

\ 

(0,1) 

r -̂,. ^ 
Qr.l 

M r , 2 

L G,,2 J 

f = "" 

(/S) 

" 0 " 

F 

0 

LoJ 

(26) 

72,43 T'lM 72|43 T2 

with only the elements of [Tp]{li[) and [77,]^,, necessary for 

W 

10 

1.0 

10"1 

< 10" 

10"3 

the calculation. The unknown variables [Mrl Qrl M,.: 

Q, 2 ) </3) at the clamped edge are determined by (26). 

Example 2: A Simply Supported Annular Double-
Plate System Driven at a Concentric Circle of Any 
Radius 

Consider a simply supported annular double-plate system 
interconnected by several springs of the same stiffness located 
at equal radial intervals. In this case (20) and (21), respec
tively, are written as 

Zl,n J 

l- 1 

n 

( i f - 0 ) 

"r, o" 

0 F 2 j ( •? / . ' ) ,+1> 

Kx 

. - * 2 

-K{~ 

K2_ J2,0 J (0) 

(27) 

and 

Z 1,A< 

•^2,/vJ (1) 

n K, -K[ T , 0 

0 F2 

RESONANT MODES 

t\ =2,103 

x 1 
^ V 

AT =3,605 

" • • 

Xi" =4,361 

5,138 

XV =6,606 

'1,M 

(,/-l,,/) L-^2,„J Uf+0) 

ANTIRESONANT MODES 

Aa =3,115 

(28) 

Ai, =4.047 

=4.866 

Ad =6,219 

0,2 0.1 0.6 0.8 1 

n 

A 
Fig. 2 Normalized driving-point impedance of a free-clamped, annular 
double-plate system driven at the free edge: p = 0.3, ,8 = 0.2, a2 /«i = 1 . 0 , 
N = 4, * = 10, K' = 1.0, 6£ = 6G = « , = « , ' =0.01 

Fig. 3 Resonant and antiresonant mode shapes of a free-clamped, 
undamped annular double-plate system driven at the free edge: v = 0.3, 
,8 = 0.2, ai =0.05, a2la1 =1.0, N = 4, «r=10, * ' = 1.0, IV, 
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Fig. 4 Normalized driving-point impedance of a free-clamped, annular 
double-plate system driven at the free edge: >> = 0.3, (3 = 0.2, o^ =0.05, 
«2 /« l = 1.0, N = 4, K = 200, K ' - 0, 6K = 0.01 

Fig. 5 Normalized transfer impedance of a free-clamped, annular 
double-plate system driven at the free edge: » = 0.3, (3 = 0.2, «-| =0.05, 
a2 '«1 = 1.0, N = 4, K = 200, K ' = 0, 6£ = 6G = hK = 0.01 Fig. 6 Force transmissibility of a free-clamped, annular double-plate 

system driven at the free edge: v = 0.3, /3 = 0.2, a1 =0.05, a 2 ' « l = 1 0 > 
N = 4,K = 2 0 0 , K ' = 0 , ^ = 0 . 0 1 

By arranging the equation obtained by the substitution of (27) 
and (28) into (22), the following equation is derived: 

•^1 ,21 

^ 1 , 3 1 

^ 1 , 4 1 

Ri.n 

R I " 1 , 1 2 " 1 , 1 2 n l ^1 \J R\ 

rw{ 

h 

i>i 

Le,,2 

^ 

^ 

<v,l> 

T, 

n.2, 

* i i? ' t i 

^ 2 

LGr,2 J (0) 

(29) 

Journal of Applied Mechanics JUNE 1982, Vol. 49/421 

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Fig. 7 Resonant frequencies of free-clamped, undamped annular 
double-plate system: y = 0.3, |8 = 0.2, a-, =0.05, a2/a:i =1.0, K = 200 , 
* ' = 0 

A!,"=15,01 Ar'=15.29 

k -3.0.10' 

20 

15 

10 y 

(a ) fe'-O 
L_ 

20 

15 

10 

(b) fe=0 

10 102 10' W 103 

k 

10" 10 10"1 1.0 10 102 10J 

k' 

Fig. 8 Resonant frequencies of free-clamped, undamped annular 
double-plate systems = 0.3,0 = 0.2, «•( =0.05,«2 '«1 =1-0, N = 4; (a) 
K ' = 0 , ( J ) ) K = 0 

where 
R{ R[ 

R2' R2 (IF.I) ti f2 

(30) 
(IF.') 

4 Numerical Calculation and Discussion 

In this section, the present method is applied to a free-
clamped, annular double-plate system and a simply sup
ported, annular double-plate system interconnected by several 
springs of the same stiffness located at equal radial intervals, 
and the axisymmetrical steady-state response to a sinusoidally 
varying concentric force is calculated numerically. For metals 
and nonmetals, the assumption that 5E is nearly equal in value 
to 5G over a broad frequency range, is well justified from the 

results of experimental measurement [8]. Though the dynamic 
moduli and damping factors depend on the frequency for 
practical materials, it was assumed for the purposes of the 
calculations presented here that 8E, <5C, 5*, and b'k are con
stant for all frequencies. 

Table 1 shows the resonant frequencies of a free-clamped, 
undamped annular double-plate system obtained by the 
present method using the transfer matrix versus the number of 
subdivided radial intervals in the calculation of the transfer 
matrix of the plate together with the exact values obtained by 
the solution using the Bessel functions. With an increase in 
number of the subdivided intervals, the values obtained here 
are in good agreement with the exact ones. 

Figures 2-6 show the response of a free-clamped, annular 
double-plate system composed of two annular plates of the 
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10 

1.0 

1 I O - 1 -

io-

io-

Fig. 9 Normalized driving-point impedance of a simply supported, 
annular double-plate system driven at a concentric circle: c = 0.3, 
(3 = 0.2, tt1 =0.05, a2 '«1 = 1-0, N = 4, * = 200, K' = 0, 5E = 8 G =S„ =0.01 

Fig. 11 Normalized driving-point impedance of simply supported, 
annular double-plate systems driven at a concentric circle: r = 0.3, 
(3 = 0.2, a-| = 0.05, N = 4, K = 200, K ' =0 , 6E = 5 G = s« =0.01, i, =0.6 
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Fig. 10 Force transmissibility of a simply supported, annular double-
plate system at a concentric circle: J = 0 . 3 , 0 = 0.2, «-, =0.05, 
a2'<*1 = 1.0, N = 4, K = 200, K ' = 0 , «£ = « G = « , =0.01,1) =0.6 

same dimensions which are interconnected by four springs 
and are driven at the free edge of the upper plate. 

Figure 2 shows the normalized driving-point impedance of 
the system. Within the frequency range of the figure, some 
resonant peaks appear at the natural frequencies (the 
frequency parameters) of the system and also some an
tiresonant peaks appear at the frequencies between adjacent 
resonant ones. With an increase of the thickness ratio alt the 
resonant and antiresonant frequencies become smaller 
monotonically. 

Figure 3 shows the deflection and angular rotation of an 
undamped annular double-plate system at the resonant 
frequencies Xj'>, Xj0), X^°, . . . and antiresonant frequencies 
X„, \b, \,, . . . presented in Fig. 2. Here, the superscripts ((') 
and (o) attached to X„ express the inphase and out-of-phase 
vibrations, respectively. In the inphase vibrations, the 
transverse deflection and angular rotation of each plate have 

the same values, respectively, and hence there are no relative 
deflection and rotation between the plates. In the out-of-
phase vibrations, the deflection and rotation are symmetrical 
with respect to the central surface between two plates. At the 
antiresonance, the deflection of the plate is extremely small at 
the driving point and hence the distinctive antiresonant 
behaviors appear. 

Figure 4 shows the normalized driving-point impedance of 
the system. With an increase of the internal damping ratios 8E 

and <5G, the distinctive resonant and antiresonant behaviors 
vanish, which is also seen in the case when the damping ratio 
5K of the springs increases. The resonant frequencies of 
damped system are usually smaller than those of undamped 
system calculated from the frequency equation obtained by 
taking F in (26) as zero. However, the difference between 
them is very small for the system with small damping treated 
here. 

Figure 5 shows the normalized transfer impedance of the 
system monitored at T\ = 0.6 of the upper plate or at ?j = 1 
and 0.6 of the lower plate marked with • at the upper-most 
figure. Though the resonant behaviors are not so much af
fected by the location of the monitored points, the an
tiresonant behaviors change irregularly. 

Figure 6(a) and (b) show the force transmissibility of the 
upper and lower plates, respectively. With an increase of the 
damping ratios, the magnitude of the transmissibility becomes 
smaller and the frequency range where the transmissibility of 
each plate is less than 0.5 becomes more wide, which indicates 
the possibility of vibration isolation. 

Figures 7 and 8 show the resonant frequencies of a free-
clamped undamped system presented in Figs. 4-6. The 
resonant frequencies of the inphase vibration are not affected 
at all by the number and the stiffness of springs, because 
relative deflection and rotation do not arise between the upper 
and lower plates. The resonant frequencies of the out-of-
phase vibration become larger monotonically with an increase 
of the number and the stiffness of springs. In this case, 
frequency crossing arises between the X^0)- and X^0)-modes for 
k = 8.0 x 103, where the deflection and rotation of the plates 
become considerably irregular as shown in the top figures. 

Figures 9-11 show the response of simply supported, an-
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nular double-plate systems interconnected by four springs and 
are driven at a concentric circle. Figure 9 shows the nor
malized driving-point impedance of the system composed of 
two plates with the same thickness. With the variation of the 
location of the driving-point, the magnitude of the impedance 
changes irregularly, although the resonant frequencies remain 
constant. 

Figure 10 shows the force transmissibility of the system at 
the inner and outer edges of the lower plate. The magnitude of 
the transmissibility of the system at the outer edge is larger 
than that at the inner edge. Within a certain frequency range, 
the transmissibility is less than 0.5. 

Figure 11 shows the normalized driving-point impedance of 
the systems composed of two plates with different thickness, 
where the frequency parameter X,|, = phla

4w2/Dl is taken as 
the axis of abscissa. With the variation of the depth ratio 
/?2 / /! | , the resonant and antiresonant frequencies and also the 
magnitude of the impedance change irregularly. 

The numerical computations presented here were carried 
out on a HITAC M-200H computer of the Hokkaido 
University Computing Center. 
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On the Instability of Rotating 
Shafts Due to Internal Damping 
Internal damping in rotating shafts can lead to dynamic instability - the unbounded 
growth over time of the off-axis displacement of the spinning shaft in whirl. In 
analyzing this phenomenon, some authors have phrased the instability criterion in 
terms of energies dissipated through internal and external damping. One such study 
has claimed that instability ensues when the rate of work done by internal damping 
equals that done by external damping. This analysis shows that this criterion is 
wrong and explains why it fails. It also provides a clear picture of how internal 
forces can act to produce instability by coupling the motion of spin with motion in 
whirl. 

Introduction 
By providing a way for kinetic energy of spin to be trans

formed into kinetic and potential energy of whirl, internal 
damping in rotating shafts can lead to unbounded growth of 
the off-axis shaft displacement with time. Crandall [1] has 
published a clear analysis of the basic phenomenon using a 
planar model of a rotor which carries around an elastically 
supported point mass subject also to internal and external 
viscous damping. The work of Thomson, Younger, and 
Gordon [2] is often cited as a paradigmatic analysis of a 
system that more closely resembles the shaft-disk assemblies 
encountered in the world of rotating machinery. In this 
concise study of the whirl stability of a pendulous supported 
flywheel, the authors first determine the whirl states as a 
function of spin speed - how the whirl frequencies and 
associated mode shapes depend on the gyroscopic effects of 
the rotary inertias of the flywheel. All of this is well and good. 
They then go on to investigate the stability of these whirl 
states with hysteretic, internal damping and viscous, external 
damping present. They obtain a criterion for instability by 
equating the rate of work by internal hysteresis to the rate of 
energy dissipation through the viscous, external damper. 

The main object of this analysis is to show that this 
criterion is wrong and to explain why it fails. At the same 
time, through the analysis of a relatively simple yet realistic 
model, this study provides, in the spirit of [1], a clear picture 
of how the forces arising from internal friction act to produce 
instability. This is accomplished without having recourse to 
the introduction of artificial forces as in [3], Finally it ac
counts explicitly for all energy sources, sinks, and trans
formations and yields a correct decision rule for stability in 
terms of these quantities; a rule compatible with the results 
obtained by others from equilibrium considerations [3-9]. 
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• VIEW C-C 
Y 

Fig. 1 Shaft-disk assembly 

Equations of Motion 
Figure 1 shows the system under consideration. The 

rotating shaft-disk assembly is designed to spin about the 
vertical axis, Z, with the centers of mass of the two disks lying 
on that axis. Motion in whirl, where the mass centers move 
off that axis is also possible as indicated in the figure. Points 
A and A' are fixed in space, gravity is neglected (its effect 
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could be taken into account without altering the essential 
results of this analysis), and all internal elastic restoring forces 
and all nonconservative damping forces are assumed to be 
generated within the intervening medium BB'. An external 
viscous damper (not shown) connects point B (and B') to 
ground. 

The X] x2 x} axes are a moving coordinate system, with the 
xt axis lying along the shaft AB and the x3 axis in the plane 
defined by the shaft and the Z axis. Motion of the rigid body 
AB (due to symmetry we need only consider half of the 
system), is expressed in terms of the angle <f>, the spin relative 
to the x{ axis, s, and the angular velocity of the plane of the 
shaft about the Z axis, u>. The angular velocity of the moving 
coordinate frame is then 

o 

co = (a)COS(/>)X| +(</>)x2 +(a>sin0)x3 

and the absolute angular velocity of the system is 
o 

Q = (cocos0 + s)x, + (0)x2 + (wsin0)x3. 

The equations of motion are found to be 
J(ucoS(t> + s) = Mi+T (1) 

(I + ML2)4>- (I + ML2 )co2 sin^cos^ + J(wcos4> + s) cosing 
= M2 - CeL

2%-KL2sm<t>{(lL2/R2){\ -cos<f>) + cos^J (2) 

( /+ML2 )(wsin#j +(I+ML2)u^>cos(l)-J^(o)COS<t> + s) 

= M]-CeL
2 cosing (3) 

In obtaining these, the internal, conservative restoring 
forces within BB' have been modeled as a rotationally 
symmetric distribution of linear elastic springs of stiffness 
K(L2/irR2) per radian of arc affixed at the disk's outer 
radius, R. The effect of the linear viscous external damper, 
which acts to retard the motion of point B, appears on the 
right-hand side of equations (2) and (3). M,, M2, and M3 are 
the components of the internal moment about A due to in
ternal damping within the layer BB'. I is the moment of 
inertia of the disk about the x2 or x3 axis, J is that about the 
Xi axis, and M is the mass of the system. 

The analysis has not been restricted to small deflections. 
Large deflections are considered in order to ensure the 
coupling of motion about the spin axis, x , , with motion in 
whirl. The gyroscopic effects of the rotary inertias / and J are 
also considered. If the latter are neglected and if the internal 
damping is taken as linear-viscous, a case considered in the 
following, then (2) and (3) define the motion of a point mass, 
M, moving in a horizontal plane —a problem considered in 
references [1] and [9]. To get the equations of motion studied 
in [1] requires a transformation to rectangular cartesian 
coordinates and the small deflection assumption to the extent 
of setting cos 4> = 1. To get the system of [9] requires admitting 
the possibility of an eccentric mass, i.e., allowing for an offset 
of the elastic axis from the mass center. 

Whirl States 

Whirl frequencies are obtained from the preceding system 
of equations by seeking nontrivial solutions for constant <j> 
ignoring all internal as well as external damping forces. For 
constant whirl-rate, equations (1) and (3) are identically 
satisfied and equation (2) yields a quadratic equation for co. 

(1 +I/ML2)u2 - (JQoj/ML2cos(t>) 

-(K/M) {1 +(2L2/R2)(l -cos0)/cos0) =0. (4) 

The absolute angular velocity of the system about the xt axis 
has been defined as Q, i.e., 

fi = Ci)C0Sl/) + 5. (5) 

For a given fl and <j>, equation (4) yields two real roots, one 

positive, the other negative. The former, assuming £ is 
positive, corresponds to a forward whirl motion, the latter to 
retrograde whirl. For a more complex system-say, with TV 
degrees of freedom — the equivalent linearized set of equations 
to (2) and (3) presents an eigenvalue problem of 27Vreal roots, 
TV positive forward whirl frequencies, and TV negative 
retrograde whirl frequencies. The associated mode shapes, the 
eigenvectors, take the place of the condition 4> = a constant 
[10]. 

Stability of Whirl States 
Stability of both the forward and retrograde whirl states 

may be studied by developing first-integrals of the equations 
of motion, identifying the terms so obtained with forms of 
energy, seeking conditions that lead to a monotonic increase 
in the energy associated with whirl. Multiplying equation (1) 
by fl yields the first-integral 

o 

Es =M\ (ucos<t> + s) + T((j]COS<j> + s) 
where Es = 1/2 JQ2 is the kinetic energy rotation about the xx 

axis. 
o 

Multiplying (2) by 4>, equation (3) by cosing, and adding the 
two first integrals so obtained gives 

E„, = M2 4> + M 3 cosin</> - CeL
2{4>2 + co2sin2 4>) 

where 

Ew= — (I+ML2){l2 + u2s\n24>) 

1 • , [ • • , 2 Z , 2 , 1 

+ — KL2\sm2<l> + ^ - ( l - c o s ^ J 

is the kinetic and potential energy of the system associated 
with motion of the moving coordinate frame, e.g., whirl 
motion. 

Consider now the moment components due to the internal 
nonconservative forces: for ease of visualization, and with but 
a small, not irrecoverable loss in generality, the mechanism 
responsible for these forces is taken to be axisymmetrically 
distributed at the disk's outer radius, R, as was the elastic 
restoring force. The elemental damping force, / , a force per 
unit radian of arc assumed to be positive when acting upward 
on the disk B, is permitted to depend on the change, 6, and 

o 

rate of change, 5, in the length of the elements themselves. 
Integrating around the disk gives 

M| = - msin^>; M3 = + tncos4> (6) 

M2 = +m2cos(f> + F6Ls'm4> (7) 

where 

m=R [ W f(5,8)sinada (8) 

m2=R\ n f(8,8)cosda (9) 

and 2iy 

J7^]* f(8J)da (10) 
J a - 0 

With these, the foregoing energy equations may be written 
o 
Es = — mojsin^cos^ - mssin4> + TQ 

o o 

E„ = + mG}sm4>cos<f> + m24>cos(l> 
-CeL

2(4>2 +u>2 sin2 <j})+F&L4>smcj> 

Two further relationships will prove useful: summing the two 
preceding equations yields an expression for the rate of 
change of the total energy of the system, namely 
o o o 

E, = m2<j>cos4> - mssm<j> + FsL(j>sm(j} 
-CeL

2(4>2 + u2s'm2it>) + TQ 
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With 5 given by 

8 = .ftcosasin<£ + L{\- coscA) 

and hence, 
o o o . 

5 = R<t>cos4>cosa - ,Rssinc/>sina + L</>sin</> 
the sum of the first three terms on the right-hand side of this 
last equation is found to be equal to the rate of work done by 
the internal damping forces, Wh That is, 

o (* ^ o o o o 

W-,= \ f(8,8)8da = m24>cos(t>- mssm4> + FsL(l)sin<t) 
J « = o 

o 

For motion in the neighborhood of a whirl state, with 0 = 0, 
co fixed by (4), and with the applied torque, T, set to zero 
(stability criteria should stand independent of an arbitrary 
external influence), the preceding relationships simplify to 

k = 
K = 
% = 

- mcosinc/>cosc/> + Wt 

+ /Mcosinc/>cosc/> - CeL
2 co2 sin2 4> 

+ Wi-CeL
2u2sin2<t> 

(11) 

(12) 

(13) 

and 

W; = ~mssin<j) (14) 
It might appear that equation (13) justifies the stability 

criterion of Thomson et al. [2], that is, instability ensues and 
the total energy of the system grows without bound, when the 
rate of work done by the internal damping forces exceeds the 
power extracted from the system through the external viscous 
damper. But this is wrong. If the internal nonconservative 
forces are truly dissipative then W, will be negative - the rate 
of work done by the internal damping on the system is truly 
power dissipated through that mechanism, e.g., mechanical 
energy transformed into heat. To derive a correct stability 
condition the spin and whirl energy equations must be con
sidered. 

Assuming for the moment that s is positive, with (r, 
negative it follows from equation (14) that m must be positive. 
Equations (11) and (12) then imply that if co is positive, i.e., 
forward whirl, then energy flows from spin to whirl at a rate 
given by 

mcosin$cosc/> 

If, on the other hand, co is negative i.e., retrograde whirl, then 
energy flows in the opposite direction and the energy 
associated with whirl motion must decrease with time. In both 
cases additional energy of spin is dissipated through the 
damper at the rate fy. Thus, retrograde whirl states are 
always stable and forward whirl states are stable so long as the 
foregoing rate of exchange of energy remains less than the 
power dissipated through the external damper. If the former 
exceeds the latter, then, according to (12), the energy of whirl 
grows without bound. 

To illustrate the argument, two kinds of damping, 
hysteretic and linear viscous, are considered in the next 
section. 

Hysteretic Internal Damping 

For the case of hysteretic damping, the case considered in 
[2], the damping force in each circumferential element might 
vary with displacement as shown in Fig. 2. Assume as is 
customary [3] as well as [2], that this relationship is frequency 
independent and that the energy dissipated per cycle, the 
shaded area in the figure, is proportional to the square of the 
maximum displacement, /?sin0. Letting AE, be the magnitude 
of that area, an energy per radian of arc, following [2], one 
can write 

AEi=2-K1(\/2)(KL1/-KR2)R2sm24> = yKL1sm1<j> (15) 

f 

Y 
3 T T a"~rA 

a = v 

\ 
/KL 2 

/ J 7 R 2 
a = 0 / 1 

'ABxy 
R sin <£ 

TT 

S> 0 

Fig. 2 Internal force-displacement relationship 

where 7 is a constant of proportionality. 
To evaluate the moment in, or Mx and M3 , the integral (8) 

around the disk over a = 0, 2TT may be transformed into an 
integral around the hysterisis loop. With 

d& = - Rsin4>sinada 

equations (6) and (8) yield 

M, f(&)dS 

where the direction of integration around the loop, for the 
case when 5 is positive is indicated in Fig. 2. In this case the 
damping element instantaneously located at a = ir/2 is ex
periencing unloading, that at a = 37r/2 loading. On the other 
hand, if s is negative, the element at TT/2 is subject to loading 
while that at 37r/2, unloading. In the latter case the direction 
of integration around the hysterisis loop reverses from that 
shown in the figure, the foregoing integral changes sign. (Note 
that Fig. 2 shows the force acting on the dissipative elements 
within the layer BB', i.e., the equal and opposite reaction to 
the force acting on the disk B.) M\ is thus expressible in terms 
of the area contained within the hysterisis loop according to 

~+l 5 > 0 

M, - AEjSgn(s) where sgn(s) 0 5 = 0 

-1 s<0 

The energy relationships then may be written 

Es = — AEjSgn(s)o)Cos4> + W, 

En, = + AEjsgn(s)oocos4>--CeL
2cci2sin24> 

and 

fVi = - AEiSgn(s)s = - AE, I s I • 

Thus W; is always negative, regardless of co and s and only 
the forward whirl modes may prove unstable. Retrograde 
whirl is always stable and forward whirl stable as long as 

AEjSgn (s) cocos0 < CeL
2 co2sin2 </> 

Using (15) this may be written 

{l/y)(Ce/K)lo>/[coscj>sgn(s)]}>l.O 

The criterion applied in [2], setting W, equal to the power 
dissipated through the external damper would give 

( l / 7 ) ( C e / A ) [ w / ( — - l ) ] > 1 . 0 

Note that this faulty criterion does not rule out the possibility 
of instability of retrograde whirl modes. 
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Linear Viscous Internal Damping 

For the case of linear viscous internal damping, the 
damping force,/, may be expressed as 

f(5,l)=-(CiL
2/-KR2)l 

Note that if § is positive, the distance between the disks is 
increasing, then the force on disk B is retarding, hence, the 
negative sign. With 6 as previously derived, equations (8) and 
(9) give 

m = + CjL2ssm4> 

m2 = — CjL14>coscf> 

and the energy relationships for motion in the vicinity of the 
o 

whirl states (4> = 0) are then 

Es = -C,L2sa>sin2<7Jcos$- Pr, 

Ew = + CjL2sa)sm2(f>cos<l)~- CeL
2u>2sm24> 

and 

Wt = -CjL2s2 sin2 <t> 

Thus, as in the case of hysteretic damping, the rate of work 
done by the internal damping is always negative, i.e., 
dissipative, retrograde whirl is never unstable, and forward 
whirl is stable so long as the following condition is met: 

Ce(j>>CjScos(t> 

This stability criterion corresponds to results obtained by 
others using equilibrium considerations [1, 7, 9]. It is not 
difficult to take the differential equations governing the 
motion of a mass point that appear in these studies, develop 
first-integrals, and state the stability criterion in terms of the 
energy expressions so obtained. (See [1], for example.) 

Discussion of Results 

It has been demonstrated that the instability criterion of 
reference [2] is incorrect. The source of this error may lie in 
[7]. In his analysis of instability caused by velocity-
independent, internal friction, Bolotin, after determining the 
conditions for solutions to the differential equations 
governing the motion of a mass point to grow exponentially 
with time, interprets the stability rule so obtained in terms of 
the energy dissipated per cycle by internal friction and by 
external friction. That is, the stability criterion he obtains 
from force equilibrium considerations is dressed up and 

masquerades as an energy condition. There is a certain 
amount of ambiguity in this, for there are two different cycles 
involved in his argument and in the energy form of his 
stability criterion. The cycle appropriate to the calculation of 
the energy dissipated by internal friction is that which occurs 
in one revolution of the shaft relative to the moving coor
dinate system, that is in time 2-K/S. For the external damping, 
the cycle is that which occurs in one revolution of whirl, i.e, in 
one revolution of the moving coordinate system relative to 
ground. This occurs in the time 2-K/IO. Equating these two 
energies per cycle, while it may be another way of presenting a 
correct criterion obtained by other means, is clearly not the 
same as setting the rate of work done by hysterisis to the rate 
of work done by external damping as was done in [2]. 

It is the transfer of energy from spin to whirl through the 
coupling term, the first term on the right-hand side of 
equations (11) and (12), that is responsible for instability. If 
the rate of transfer exceeds the rate at which energy is ex
tracted from whirl motion by means of the external damper 
then the off-axis shaft displacement will grow unbounded in 
time. The energy dissipated through internal damping is truly 
dissipated and it is best not to suggest that this power flow out 
of the system is responsible for instability. 
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Extended Kane's Equations for 
Nonholonomic Variable Mass 
System 
An extension of Kane's equations of motion for nonholonomic variable mass 
systems is presented. As an illustrative example, equations of motion are for
mulated for a rocket car. 

Introduction 

In 1979, Ge [1] derived three forms of equations of motion 
for linearly nonholonomic, variable mass systems, namely, 
generalized Ferrers' equations, generalized Hamel's 
equations, and generalized Appell's equations. The present 
paper contains a generalization of Kane's equations [2-4]. 
The new equations apply to nonholonomic variable mass 
systems and are simpler than any of the others, a fact that 
becomes readily apparent when they are used in an illustrative 
example. 

Derivation 

Consider a system S of N variable mass particles 
P i , . . . ,PN, whose configuration in an inertial reference 
frame R* is characterized by n generalized coordinates 
( ? ! , . . .,<7„, which is subject to constraints represented by m 
linear nonholonomic constraint equations of the form 

^,Aisqi + Bs=0(s=l, ,m) (1) 

where Als and Bs (;'= 1, . . . ,n; s= 1, . . . ,/w) are functions 
of <?,, . . .,q„ and the time /. The number of degrees of 
freedom of S is k = n-m. Proceeding as in reference [2], one 
can introduce k generalized speeds w,, . ,,uk such that 
equation (1) is satisfied whenever qx, . . . ,qn satisfy the 
kinematical equations 

°<= J^Cirur+Di(i=l, . . .,«) 

where Cir and £), are functions of qt, . . 
velocity of P, inP* can be written as 

(2) 

,q„ and /; and the 

V< = XX^+Vf'( /=!, ,N) 

where \Pl is called the rth partial velocity of P, in R*. Now, 
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for each variable mass particle P, of mass m,(T), we have the 
fundamental dynamical equation1 

R, - m,ap ' + Cp< m,,= 0(/ = 1, . . . ,TV) (3) 
where R, is the resultant of all contact and body forces acting 
on P, ,ap< is the acceleration of P,, m, is the time-derivative of 
rrij, and Cp' is the difference between the velocity of matter 
being separated from P, and the velocity of P, itself. Taking 
the dot product of equations (3) with \Pl, and summing from 
1-/V, we have 

N N 

Lvr<'R,+ £vf,'(-/Bja',f) 
/' = I ; = 1 

N 

+ J^y^i'Cpimi=0(r=l, . . . ,k) (4) 

and, after defining Fr, F*, and Fr', called the generalized 
active force, the generalized inertia force, and the generalized 
thrust for S in R*, respectively, as 

N 

1 = 1 

N 

Fr'=^ri'CPimi(r=l, . . . ,k) 

(5o) 

(5b) 

(5c) 

(6) 

one can replace equation (4) with 

Fr+Fr*+F,.' =0(r=\, . . . ,k) 

These equations are called the Kane's equations for 
nonholonomic variable mass systems. 

If system S consists of L particles P\, . . . ,PL of variable 
mass Xi, . . . ,XL, respectively, M particles Qit . . . ,QM of 
constant mass n]t . . . ,\iM, respectively, and TV rigid bodies 
R\, . . ., RN, then 

pr= •£vr<-R,+ i > ? ' - R , + i,{F,)Rs 

1 When some matter is being added to P, while other matter is being 
separated from P , , equation (3) must be augmented with a term similar to the 
last term in equation (3). 
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p*= Lv?'<-\»po 

+ tv?j(-^*Qj)+ 2>;)«, 
y"=i 

Fr'=LV? •cw\-

where (Fr)R and (F*)R are, respectively, the contributions 
of Rx, /?/v to iv and Fr*. The methods for evaluating 
these have been presented in detail in reference [3]. Moreover, 
if some of/?, , . . . ,RN form gyrostats, one can evaluate their 
contributions to Fr and F* by using formulas available in 
reference [3]. 

Application to Rocket Car 

Figure 1 represents an idealized model of a jet racing car 
which is propelled by a rocket engine at point P, the rocket 
engine being treated as a variable mass particle at P. The 
vehicle consists of the particle at P, the body A2, which 
contains the rear axle, the front axle Au pivoted on A2 at 
point Q, and four wheels B, (/= 1,2,3,4,). Bx, B2, and AXt 

form a gyrostat G,, while B}, B4, and A 2 form a gyrostat G2. 
Points Q and C are presumed to be the mass centers of G, and 
G2, respectively. 

Geometrically, the system is characterized by the dimen
sions L, I, a, b, rx, and r2 shown in Fig. 1. We introduce g,, 
g2, g3 and g ' , g ' , g ' as two dextral sets of mutually per
pendicular unit vectors fixed onAl andA2, respectively, and 
we let M, , M2, and m(t) denote the masses of G,, G2, and 
the particle at P, respectively. Furthermore, we let / , be the 
moment of inertia of Gx about the axis parallel to g2 and 
passing through Q, I2 the moment of inertia of G2 about the 
axis parallel to g2' and passing through C, Jx the axial 
moment of inertia either of Bx or of B2, and J2 that of either 
of B3 ori?4 . 

Generalized coordinates that suffice for the description of 
the configuration of the system are qx and q2, Cartesian 
coordinates of Q; q3, an attitude angle for A2; q4, measuring 
the relative orientation of Ax and^42; and q4+i (/= 1,2,3,4,), 
rotation angles of wheels Bx, . . . ,B4; hence n = 8. 

Since, as will be shown, k = 2, we need two generalized 
speeds. We define these as 

(7) A/i, 

and 

« 2 A V C - g 3 (8) 

where ^or 4 ' denotes the angular velocity of Ax in^42 .sothat 

^ o / l = < 7 4 g 2 (9) 

while V° is the velocity of Q, so that 

\Q=qxnx+q2n2 (10) 

where n, and n2 are unit vectors directed as shown in Fig. 1. It 
thus follows directly from equations (7) and (9) that 

«1=<74 (11) 

and from equations (8) and (10) that 

U2=QiCi+4+q2S3+4 (12) 

where C3+4 and S3+4 denote cos (q3 + q4) and sin(<73 +q4), 
respectively. 

Six additional independent equations linear in qx, . . . ,qs 

result from imposing the requirement that Bu . . . ,B4 roll 
without slipping. For example, in order for the point of Bx 

that is in contact with the support to have zero velocity, the 
two equations 

Fig.1 

Q\ ̂ 3+4 ~ QiC3+4 = 0 (13) 

and 

Q\Ci+4+q2S3+4-a(q3 + q4)-rxq5 =0 (14) 

must be satisfied. Hence we have eight equations linear in 
qx, . . . ,qg, and, solving them for these variables, we obtain 

Q\ = u2Ci+4,q2=u2S3 + 4,q3 = ~~u2S4,q4=ux 

(15) 
<75 = — [ ( l - -^S4Ju2~aul 

<76 = —[ ( l+ ^S4J«2+ff"iJ 

1 / b \ 1 / b \ 
q1 = — [C4- — S4 1 u4,<78 = — I C4 + —- S4ju2 

These are the kinematical equation playing the roles of 
equation (2). Moreover, the velocities of Q, C, and Pnow can 
be expressed as 

yQ=u2g},V
c = u2 (c4g3' + ^-S4gl'),\

p=u2C4g3' (16) 

while the angular velocities of Ax and A2 are given by 

1 A 1 

— (Lux +u2S4)g2,o/42 = — u2S4g{ 
(17) 

The partial velocities of Q, C, and P, and the partial 
angular velocities of Ax and A2, formed by reference to 
equations (16) and (17), are 

vF=o,v2
e=g3,vf=o,V2c=^s4gl ' + c4g3' 

Vf=0,Vf = C4g3' 

1 1 
^ l = g 2 > t ^ l = _ S 4 g 2 i W | / l 2 = 0 , ^ 2 = ™ S 4 g 2 ' 

Differentiation of equations (16) and (17) with respect to / 
produces [with the aid of equation (15)] the accelerations and 
angular accelerations 

ap = — u\S4C4g{ +{ii2C4-uxu2S4)g3' kapgx' +aPg3' 

ac = — ("2 S4 C4 + u2 IS4 + luxu2 C4 )g{ 

+ (u2C4-uxu2S4 - j^ujSljgj i a f g , ' + a$g3' 

*Q = ( - ^ " 2 - S 4 + M l M 2 ) g i + W2g3=«fgl +«2g3 

of4! = (u2S4 + ux u2 C4 + Lux )g2 lor41 g2 

cfii = j-(u2S4+uxu2C4)g2'^2g2' 
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There are no forces contributing to generalized active forces. 
The contribution of a gyrostat G to generalized inertia force, 
denoted by {F*)G, can be found by using the relationship 

(F;)G = (F;)CR+(F;)G! (is) 

where 

WhR=V?'*c + *>?-To (19) 

(Fr*hi= -Arflqicgi +qki<*3*2-<»2&3)] 
+ Ckr(w?+k")} (20) 

The physical significance of each term of equations (18)-(20) 
has been given in reference [3]. 

For the gyrostat G{, equation (19) yields 

1 
(f*)G,R = ~ / l 0*1 ,(Ft)aiR = " A / , U. -Ila

AiS4 (21) 

It is noted that Gt contains two rotors, so that equation (20) 
leads to 

(FnGlt= -MCSiqs+C6iq6), 

(^2,)Gl/=--MC52<?5+C62<76) (22) 

Here, q5 and q6 can be evaluated from q5 and q6 given in 
equation (15), and Ckr(k=5,6,; r=l,2) may be obtained 
from equation (15): 

a 1 / a \ a 
Ql = >C52

 = U T ^4 l iQl = >C62 

According to equation (18), we have 

(F*h, = - / , c ^ i - 7 , ( C 5 1 & + C 6 1 & ) 

(^2*)C - M! M2 • / ] c ^ 4 > S 4 - / 1 ( C 5 2 ^ + C 6 2 9 6 

(23) 

Similarly, for G2 we find 

(F, ')0 2 = - / 2 ( C 7 , g 7 + C 8 1 ? 8 ) 

(F2 ')C2 = -M2( t f3
cC4 + - ^ « f S 4 ) 

- j-I2a
A2S4-J2(C12q1+CS2q\) 

The contributions of P to Fr* are 

(F1*)p=0,(F2*)P=-m(OflfC4 

(24) 

The generalized inertia forces now can be formulated as 

F; = {F;)Gx + (F*)G2 + Whir = 1,2) (26) 

We assume that the velocity of the material ejected at P 
relative to A2 is -C(t)gi', where C(t) is positive. Then the 
generalized thrust, formed in accordance with equation (5c), 
is 

F , ' = 0 , F{=-C(i)mC4 (27) 

Substituting from equations (26) and (27) into equation (6) 
and using equations (23)-(25), one arrives at the following 
equations of motion of the car: 

Liii + uxu2C4 + u2SA =0 

au i S4 + wUi u2C4S4 + (T+ T, Si + T2C\)ii2 + C(t) mC4 = 0 

where 

1 / 2al 7, \ 
M, 

27, 

~7f 
,T2=m(t) +M2 + 

Tl : 
1 

L? 
/ , 2a27, 26272 \ 
(/, +h +M2l

2 + —j-L + —^- i j ,TT = T, - T2 

272 

26_V2 

Conclusion 

(25) 

The reader can vertify that the formulation of equations of 
motion for the system just considered becomes a very 
laborious task when it is based on any of the classical 
equations, such as Lagrange's equations, Hamel's equations, 
etc., rather than on equation (6). Thus it appears that Kane's 
equations furnish a more effective tool for the formulation of 
equations of motion than do the other methods, not only for 
constant mass systems, but also for variable mass holonomic 
or nonholonomic systems. 
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Torsion of Multihole Circular Cylinders1 

A. K. Naghdi2 

Introduction 

The problem of torsion of cylindrical bars with a row of 
equally spaced circular cavities is investigated. Both cases of 
cylinders with or without a central cutout are considered. In 
the case of a multihole bar with a central circular hole, the 
combination of eigenfunctions of Laplace's equation in 
bipolar and polar coordinate systems is utilized. Extensive 
and very accurate numerical results for shear stresses and 
torsional rigidities are presented. Some of these results are 
compared with those given by a previous investigator. 

Method of Solution 

The problem of torsion of circular cylindrical bars having 
eccentric as well as central circular holes was first solved by 
Ling []]. He employed functions defined by Howland [2]. 
Later, Kuo and Conway [3, 4] used the same technique for the 
solution of the problem of torsion of cylinders whose ec
centric and central circular cavities are reinforced with cir
cular bars of different material. Recently, a method of solving 
Laplace's equation in a multiply connected circular region 
was introduced by the author [5]. This latter technique, 
although not used in this investigation, provides valuable 
information for comparison. The advantage of the new 
technique presented in this investigation is believed to be the 
remarkably accurate solutions it produces as compared to the 
computer time it requires. 

Consider circular cylindrical bars whose cross sections 
contain N eccentric, equally spaced circular holes. The two 
cases of the cylindrical bars with or without a central cutout 
are analyzed [see Figs. 1(a) and 1(b)]. According to St. 
Venant's theory of torsion of prismatic bars [6], Laplace's 
equation 

V 2 ^ = 0 (1) 
must be satisfied in the multiply connected region, and the 
boundary conditions 

^ 
on the outer 
boundary, p = (2) 
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t=-p2+K„ 

, 2 ,3 , , /V+l 

on each inner 
boundary 

(3) 

has to be fulfilled. Here in relation (2) p = r/R is the 
dimensionless polar coordinate measured from the center of 
the main circle, and K,„ are constants to be determined. In 
addition, it is required that the following conditions be 
satisfied [6]: 

Fig. 1(a) Cylinder with equally spaced circular cylindrical holes 

Fig. 1(b) Cylinder with equally spaced circular cylindrical holes and a 
central circular cylindrical cavity 

Fig. 1 
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DESIGN DATA AND METHODS 

4'\ = H v4„ {[e""i -e"<2'J-,<i)]cosrt£1 

(5) 
+ [enn-e"i2l3-n)]cosni;2+-- + [e'"i' 

_ e « ( 2 / 3 - ^ ) ] c o s n ^ N j 

in which £, and T?; are the bipolar coordinates measured with 
respect to rectangular coordinates X, and Y, system (see Fig. 
2), and are given by [7]: 

2CT, 
£,• = Arctan 

Fig. 2 Utilization of multibipolar coordinate systems in the solution of 
torsion of multihole cylinders 

1 (*i + C)2 

77, = -In 

2 {Xj-C)2 

Xj + Yj-C2' 

Y,1 

Y} 

d^ 

dn 

X: - Y, 
X = — , y,-= — , /'= 1,2,3,. 

' R ' R 
,N. 

(6) 

ds = 0, w = 1,2,3, ,/V+l, (4) 

in which C,„ is the boundaries of the inner holes, ds is the 
element of arc length, and n is the normal direction associated 
with each inner cutout [see Figs. 1(a), 1(b)]. Since the con
stant 1/2 is a solution of Laplace's equation, relations (1-4) 
may be rewritten as follows: 

V2t/<1=0,1/'i = i - - , 

Here in equation (5)/3 is the common value of all T?, on the 
outer boundary of the cylinder, and is obtained from [7]: 

/3 = cosh " ' (ocosha + e), 

1 

2ae •3 (7) 

\pt = 0 on the outer boundary p = 1, 

ii = \p2+K,h 
1 

on each inner boundary, 

dn 
ds = 0, m = 1,2,3,. ,N+] 

d') 

(2') 

(3') 

(4') 

The following series solution with each term consisting of 
number of solutions of Laplace's equation in a multibipolar 
coordinate system is now introduced: 

a= - , e= - , a = cosh 
K K 

It is seen that each term in the series solution (5) automatically 
satisfies conditions (2') and (4'), and that it is periodical in 
the circumferential direction with the period of 2%/N. The 
solution (5) shall be utilized for the problem of a multihole 
cylinder without a central hole. 

The only remaining condition to be satisfied is (3'). 
Considering the symmetry, the common constant Kx =K2 = 
— = KN = K shall be evaluated along with Au A2, -—, A„ by 
satisfying the condition (3') on one half of the boundary of 
one of the inner circular cutouts. 

The solutions of Laplace's equation in polar coordinates 
p = r/R, 6 satisfying conditions (2') and (4') are obtained in 
the usual way. Thus, it is found 

Table 1 Comparison of the values of fze along radial lines BC, OD, and 8 = ir/N [see Fig. 
1(a)], obtained from the present investigation, (pre.) with those from reference [5]. a = 0.1, 
e = 0.6,7V=4. 

R 
0.75 0.80 0.85 0.90 0.95 

Tze 
along 

BC 

pre. 1.005174 0.944174 0.945219 0.970959 1.008754 

[5] 1.005175 0.944173 0.945217 0.970956 1.008752 

p = 
R 

1/6 2/6 3/6 4/6 5/6 

along 

OD 

pre. 0.171101 0.369953 0.504343 0.487211 0.878751 

[5] 0.171102 0.369952 0.504341 0.487206 0.878750 

Tze 

along 
8 = 

TT/N 

pre. 0.161095 0.295598 0.429248 0.605069 0.791715 

15] 0.161096 0.295598 0.429248 0.605070 0.791715 

Table 2 Comparison of the values of shear stresses and torsional rigidities obtained in the 
present investigation with those given by reference [1] for the case of a = 1/1, e = 3/7, TV =2 
[see Fig. 1(a)]. 

present 

investigation 
reference [1] 

fze \B 

1.19880 
1.194 

fze \c 

1.18549 
1.185 

fze \A 

0.396801 
-0.392 

Tze 
P = i 

- I 
0.91614 

0.916 

• D / ( T T / 2 ) 

0.871216 
0.8809 
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DESIGN DATA AND METHODS 

Table 3 Comparison of the values of shear stresses and torsional rigidities obtained in the 
present investigation with those given by reference [1] for the case of two eccentric holes and 
a central cutout with d = 0.2, e = 0.6, ax =0.2 [see Fig. 1(6)]. 

present 

investigation 

reference [1] 

fzo \B 

1.54667 

1.547 

Tzo \c 

1.30794 

1.308 

fze \A 

1.03328 

- 1 . 0 3 3 

fze 1 A , 

0.45887 

0.459 

0 / ( T T / 2 ) 

0.86802 

0.8093 

Table 4 The values of dimensionless shear stress fzd along the radial lines BC, OA [see Fig. 
1(a)] and along the line 0 = 30 deg for the case of a/R = 0.1, e/R = 0.6, and N=6-cylinder 
without a central hole (R = cylinder radius, e = eccentricity of holes, a = eccentric hole radius, 
7V = no. of holes). 

P along 
BC 

0.7 
0.775 
0.85 
0.925 
1.00 

fze 

1.231 
0.932 
0.921 
0.968 
1.035 

p along 
OA 

0. 
0.125 
0.250 
0.375 
0.50 

fz0 

0. 
0.125 
0.257 
0.435 
0.999 

p a long 
0 = 30 deg 

0. 
0.25 
0.50 
0.75 
1.00 

fzt> 

0. 
0.243 
0.375 
0.673 
0.971 

Table 5 The values of dimensionless shear stress fa along the radial lines BC, AXA, [see 
Fig. 1(b)] and along the line 0 = 30 deg for the case of a/R = 0.1, e/R = 0.8, ax/R = 0.5 and 
A' = 6 - cylinder with a central hole (R = cylinder radius, e = eccentricity of holes, a = eccentric 
hole radius, a, = central hole radius, iV= no. of eccentric holes). 

p a long 
BC 

0.900 
0.917 
0.933 
0.950 
0.967 
0.983 
1.000 

fz0 

1.792 
1.590 
1.472 
1.404 
1.368 
1.354 
1.357 

p along 
AXA 

0.500 
0.533 
0.567 
0.600 
0.633 
0.667 
0.700 

fze 

0.602 
0.639 
0.696 
0.776 
0.894 
1.086 
1.463 

p a long 
0 = 30° 

0.900 
0.917 
0.933 
0.950 
0.967 
0.983 
1.000 

fze 

0.767 
0.786 
0.805 
0.824 
0.842 
0.861 
0.880 

Table 6 The values of fze along the line BC for the cases of multihole cylinders without a central cutout for various a/R, 
e/R andN(R = cylinder radius, e = eccentricity of holes, a = eccentric hole radius, 7V= no. of holes). 

a/R- = 0.l,e/R = 
7V=4 

:0.6, a/R = 0A,e/R~-
N=6 

0.6, a/R-- 0.125, e/R--
7V=3 

0.7 a/R-- ••0A25,e/R = 
N=5 

0.7, a/R = 0A5,e/R--
N=4 

0.7, 

fze 
0.700 
0.775 
0.850 
0.925 . 
1.000 

1.281 
0.962 
0.945 
0.989 
1.054 

0.700 
0.775 
0.850 
0.925 
1.000 

1.231 
0.932 
0.921 
0.968 
1.035 

0.825 
0.869 
0.913 
0.956 
1.000 

1.603 
1.321 
1.229 
1.212 
1.232 

0.825 
0.869 
0.913 
0.956 
1.000 

1.522 
1.259 
1.176 
1.163 
1.186 

0.85 
0.889 
0.925 
0.963 
1.000 

1.628 
1.408 
1.320 
1.295 
1.307 

Table 7 The values of fi0 along the line BC for the cases of multihole cylinders with a central cutout for various a/R, e/R, 
a,/R, and TV (R = cylinder radius, e = eccentricity of holes, a = eccentric hole radius, a, = central hole radius, 7V=no. of 
eccentr ic h o l e s ) . 

a/R = 0A,e/R = 0.6, 
al/R = 0.3,N=4 

P fze 

a/R = 0A,e/R = 0.6, 
ax/R = 0.Z,N=6 

P Tze 

a/R = 0A25,e/R = 0J, 
al/R = 0A,N=5 

P fze 

a/R = 0A,e/R = 0.8, 
al/R = 0.5,N=6 

P Tze 

a/R = 0A5,e/R = 0.7, 
ax/R = QA,N=A 

P fze 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 

1.282 
1.006 
0.945 
0.946 
0.971 
1.009 
1.054 

0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 

1.232 
0.971 
0.916 
0.921 
0.949 
0.989 
1.035 

0.825 
0.854 
0.883 
0.913 
0.942 
0.971 
1.000 

1.522 
1.316 
1.219 
1.176 
1.162 
1.167 
1.186 

0.900 
0.917 
0.933 
0.950 
0.967 
0.983 
1.000 

1.792 
1.590 
1.472 
1.404 
1.368 
1.354 
1.357 

0.850 
0.875 
0.900 
0.925 
0.950 
0.975 
1.000 

1.634 
1.466 
1.374 
1.324 
1.302 
1.299 
1.310 

^i = £ AJ (PM - PNJ) cosNJd. (8) 

The function \pt = $•, + \p*{ is suitable for the case of the 
problem of torsion of a multihole cylinder with a central 

A* ...A* . cutout. The unknown constants of integration A*,si2 

-A,, A2, —An— along with K and K* =KN+I are evaluated 
by applying the inner boundary condition (3 ') on one half of 
one of the eccentric holes and 1/27V of the boundary of the 

central cutout. For this purpose, p terms in the series solution 
are retained, and the boundary condition(s) are satisfied at q 
points (q>p) of the boundary (or boundaries) 
under consideration. This procedure leads to a set of qxp 
linear algebraic equations which are normalized and solved 
approximately by the method of least square error [8]. For a 
case of a cylinder with only eccentric holes, using 35 by 24 
equations, the maximum value of relative error in satisfaction 
of the inner boundary condition is of the order of 10 ~12. This 
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Table 8 The effect of closeness of the eccentric holes to the 
outer boundary: dimensionless shear stresses TZ) \g and fz01 c 

[See Fig. 1(a)] versus e/R for the case of a/R = 0.125, 
iV=3-cylinder without a central hole (R = cylinder radius, 
e = eccentricity of holes, a = eccentric hole radius, 7V=no. of 
holes). 

e/R 7a Trflc 
0.70 
0.75 
0.80 

1.603 
1.789 
2.101 

1.232 
1.382 
1.708 

Table 9 The values of dimensionless torsional rigidities D 
for various a/R, e/R, TV and for the cases of cylinders without 
a central hole (R = cylinder radius, e = eccentricity of holes, 
a = eccentric hole radius, N= no. holes). 

a/R e/R N D 
0.100 
0.100 
0.125 
0.125 
0.150 

0.6 
0.6 
0.7 
0.7 
0.7 

4 
6 
3 
5 
4 

1.482 
1.444 
1.422 
1.337 
1.293 

Table 10 The values of dimensionless torsional rigidities D 
for various a/R, e/R, a^/R, N and for the cases of cylinders 
with a central hole (R = cylinder radius, e = eccentricity of 
holes, a = eccentric hole radius, at= central hole radius, 
iV= no. of eccentric holes). 

a/R 

0.100 
0.100 
0.100 
0.125 
0.125 
0.150 

e/R 

0.6 
0.6 
0.8 
0.7 
0.7 
0.7 

a{/R 

0.3 
0.3 
0.5 
0.4 
0.4 
0.4 

N 

4 
6 
6 
3 
5 
4 

D 

1.460 
1.410 
1.199 
1.369 
1.262 
1.208 

remarkable accuracy shows how rapidly the series solution (5) 
converges. Thus, for ordinary engineering approximations 
much smaller sets of linear equations can be utilized. 

The values of dimensionless shear stress fze=Tz0/GaiR
2 

and torsional rigidity D=T/GctxR
A are determined from the 

obtained solution [6]. Here a, is the angle of twist per unit 
length, G is modulus of shear, and T is the applied torque. 
The nondimensional torsional rigidity D is evaluated by a 

highly accurate eight-order polynomial approximation for 
numerical integration [8]. 

In Table 1 the values of fz6 along various radial directions 
are compared with those calculated from the technique of 
reference [5]. In Tables 2 and 3 the values of dimensionless 
shear stresses and torsional rigidities are compared with those 
given by Ling [1]. It is seen that most of the values of fa in 
Tables 2 and 3 agree closely. The disagreement of the signs for 
the shear stresses at point A is believed to be due to the dif
ference between the convention signs of TZ6 and TZ4, . However, 
the values of £>/ (TT/2) in Tables 2 and 3 disagree. In view of 
the comparison of our results with those of the independent 
technique of reference [5] (Table 1), the correctness of the 
values of D/ (w/2) given by Ling [1] is doubtful. In Tables 4 
and 5 the values of nondimensional shear stresses fzt have 
been presented for various p and d, and for the cases of 
multihole cylinders with or without a central circular cavity. 
In Tables 6 and 7 the variations of dimensionless stress fze 

along the lines BC [see Figs. 1(a), 1(b)] are presented for 
multihole cylinder cases with or without a central hole, and 
having 3, 4, 5, and 6 eccentric holes. In Table 8 the effect of 
nearness of the eccentric holes to the outer boundary is 
demonstrated. Finally, in Tables 9 and 10 the values of 
torsional rigidity D for various geometrical dimensions are 
presented. 
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Stability of Nonparallel Developing Flow in 
an Annulus to Asymmetric Disturbances 

V.K. Garg1 

Linear spatial stability of the nonparallel developing flow in a 
concentric annulus shows that the asymmetric disturbance 
with an azimuthal wave number equal to unity is more un
stable than the axisymmetric disturbance at all axial locations. 
Also, in the near entry region, the critical Reynolds number 
corresponding to the parallel flow theory is as much as three 
times that due to the nonparallel theory for some values of the 
annular diameter ratio. 

Introduction 

Almost all practical applications of flow through ducts 
involve the developing flow rather than the fully developed 
flow. However, while the stability of fully developed flow in a 
concentric annulus has been thoroughly studied [1-3], that of 
the axially developing flow has not been examined. One 
possible reason for this may be the fact that the developing 
flow is not a parallel flow but changes, though slowly, in the 
downstream direction. It is known [4], however, that even this 
slow variation affects the stability characteristics con
siderably. An additional complication is the fact [5] that 
Squire's theorem [6] is not applicable to axisymmetric flows. 
We, therefore, examine the linear spatial stability of the 
nonparallel, axially developing flow in a concentric annulus to 
asymmetric disturbances. 

Analysis 

For the flow of an incompressible, Newtonian fluid in the 
inlet region of a circular, concentric annulus of inner and 
outer radii a and b, respectively, we define the following 
dimensionless variables 

X--
2x 

R-
2r 

U= — ,V 

b~a' 

t;VRe 

r=-
2tu„ 

u„ 
Re = 

ua(b -a) 

(1) 

" „ 2v 
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where x and r are the axial and radial coordinates measured, 
respectively, from the inlet section and the axis of the an
nulus, u and v are the axial and radial components of velocity 
at any point (x,r) and at any time t, u„ is the average velocity 
of the flow, p is the pressure at any section x, p and v are, 
respectively, the density and kinematic viscosity of the fluid, 
and Re is the Reynolds number of the flow. 

Consider an infinitesimal asymmetric disturbance with 
dimensionless velocity components u(X,R,0,T), v(X,R,6,T), 
and w(X,R,Q,T), and dimensionless pressure p(X,R,Q,T) 
superimposed on the main flow. Here d is the azimuthal 
coordinate of the cylindrical coordinate system. It is well 
known that for the developing flow the velocity components 
U(X,R) and V(X,R) are slowly varying functions of X. To 
express this slow variation we introduce another independent 
variable Xt along X direction such that Xt =eX, where e is a 
small dimensionless parameter that characterizes the non-
parallelism of the flow; e = 0 implies a truly parallel flow. For 
reasons given in [4], e is taken as Re~ , / 2 in the near-inlet 
region. The disturbance is taken to be of the type 

u={u0(xl,R) + eu](XI,R) + e2u2(Xl,R) + . . . .}e 

and similar expressions for v, w, and/?, with 

(2) 

= k0(Xl), and 
dt) 

•n, 
dt] dr] 

-jff ~ -«>. -^ • '" ,"'" ~ - 30 

where to is the dimensionless frequency of the disturbance, n is 
the azimuthal wave number, the real part of k0 is the axial 
wave number, and its imaginary part is the spatial growth rate 
for parallel-flow stability. Substituting for u,v, etc., from 
equation (2) in the linearized governing equations, using the 
transformation relations between (X,T) and (X\,rf) planes, 
equating the like powers of e, and denoting a derivative with 
respect to R by D, we get 
Order e0: 

= D2un + -Lu(u0) 

Lu(v0) = Dv0 + 

Du o 

Lw(w0) = D2w0 + 

R 

R 
Dw0 

-Au0 -Rev0DU-ik0p0 =0, 

+ ik„un + o"o" R 
-0, 

R (A+R2> 
2inv0 inp0 0, 

R2 R 

Lp(Po) = Dp0+Av0+ik0Du0 
R 

-Dwn + 
R2 

whereA=n2/R2 +/tfj + /Re (k0U-ui), p0 stands for 
with the boundary conditions u0 = v0 = w0 = 0 
R2, where R, = 2a/(b - a) and R2 = 2b/{b - a). 

(3) 

Repo 
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Order e1 

/ dua dU \ 
L„(Ul) = Re^U-^- + VDu0+u0—J + -

Lv(vt) = 

L„(wi) 

Lp(lh) 

- 2ik0 

du{ 

dX 

Re(u-

- 2ik0 

dX, 

du0 

dX{ 

) 
i 

dw0 

dXt 
dwQ 

dPo_ 
~dX, 

•iu„ A° dX, ' 

+ VDw0 + 

dkn 

VWn 

dX, dX, 
(4) 

-Re y 9^o 
dX, 

VDv0 + v0DV 

dX,dR 
''(> ^ , 7 3u dk„ 

+ 2ikn —— + wn dX, dX, 

with the boundary conditions 

«! =V\ = W| =0 at R = R{ and /?2. 

For given values of OJ, Re, U(Xt,R), and ppf,,/?), the 
solution of (3) may be expressed as 

w0 = fl(A'1)l81(/?;Ar
1),Uo=fl(Ar,)j32(/?;Jf1). 

w„ = B{X,)H,(R;X,), and /70 =fl(Jf1)j34(/?;Ar
l), 

where (3,, /32, etc., are the eigenfunctions. The amplitude 
function B(X\) is given by 

dB 

dX, 
-ikdXx)B (5) 

where ikx =b2{X{)/bi(Xl), and bx and ft2 involve 
quadratures of the eigenfunctions of the original and adjoint 
problems. Thus, to the first approximation 

u = B0(3){R\X^) exp [i\(k0 + ek,)dX-iuT+ind], (6) 

and similarly for v,w, and p, where B0 is a constant. 

Computational Procedure 

The main flow velocity field was found using an implicit 
finite-difference technique [7]. This yields the velocity 
components U and V as functions of A^AVRe and R. 
Equations (3) were integrated using the fourth-order, Runge-
Kutta method. Convergence to the eigenvalue, k0, was 
achieved by means of Muller's technique [8]. With kQ and 
eigenfunctions known, a procedure similar to the foregoing 
was used to solve the adjoint problem 

. Du* . nknw* 
D2u* + —-+ik0p*-(A+k2

0)u*~--^— = 0, 

v inw' 
DV*+ -j- +ik0u*+^-=0, 

Dw* / «z + l \ 
D2 w* + (A+ =- w* 

R V R2 > 

nk0u* 2inv* inp* 
, + — = 0 , 

R2 R 
(7) 

2inw* 
Dp* + Reu*DU-Av* -^— =0, 

R 

with the boundary conditions 

u* = v* = w*=Q at R = RS a n d ^ 2 , 

the difference being that no iteration is necessary since the 

Table 1 Radial distance R„ 
has the maximum value 

(from the inner wall) where g„ 

Rw 

X 
7 = 0.01 7 = 0.1 

0.008 
0.012 
0.020 
0.028 

1.8 -1.83" 
1.775-1.805 
1.745-1.785 
1.735-1.765 

0.16 -0.2 
0.18-0.21 
1.75-1.785 
1.725-1.765 

X 
= 0.4 = 0.8 

0.004 
0.006 
0.008 
0.012 

0.135-0.16 
0.145-0.165 
0.155-0.17 
1.825-1.85 

0.125-0.14 
0.135-0.15 
0.145-0.155 
1.84 -1.85 

"varies slightly with Re and w. 

adjoint problem has the same eigenvalue as the original 
problem. Calculations were performed on a DEC 1090 
computer that carries 17 digits in double precision mode. Step 
size for the Runge-Kutta method was taken as 0.005 and 
selective application of the Gram-Schmidt or-
thonormalization technique was used to keep the solution 
vectors linearly independent during numerical integration; 
details are available in [9]. 

Results 

Growth rates based on the axial, radial, and tangential 
components of disturbance velocity and on the energy density 
E of the disturbance following [10] were obtained at several 
axial locations. Defining the growth rate of a complex flow 
quantity Q as 

= J_ dl^l 
gQ~ \Q\ dX ' 

it is easy to see that the growth rate based on w is given by 

gw(X,R)-- -<xr I /331 dx. J 3 I l ^ i , 

where a, is the imaginary part of {k0 + ek\). Similar relations 
hold for g„ and gv. The growth rate of energy density E of the 
disturbance where 

*R, 
2-wR(u2 + v2 + w2)dR, 

is given by 

1 , dE e dC 
S E ^ - E ^ — ^ a i + 2C dX, 

where 
n R 

C= (1/3, l 2 + l/32l2+ \p}\
2)RdR. 

Since the velocity field was obtained at a given X instead of 
X, all growth rates have been obtained for a given X value, 
and are, hereafter, referred to asfunctions of X. Amongt 
gE{X), g„(X,R), gv(X,R), and gw(X,R), it was found that the 
maximum value of g„ is the largest at a given X. Results are 
therefore presented for gw only. It is also known that for the 
nonparallel flow stability, one gets different wave numbers 
for different disturbance properties. It was found, however, 
that the modified wave numbers are little different from the 
parallel flow wave number given by the real part of k0. 
Therefore, the modified wave numbers, though computed, 
are not reported here. 

Since gw is a function of both the axial and radial coor-
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dinates, the maximum value of gw, occurring at say Rw, was 
selected for a given axial location to limit the number of 
neutral curves. Typical values of Ru, are listed in Table 1. It 
may be noted that the values of Rw are close to those 
corresponding to the boundary layer edge of either the inner 
or the outer wall depending on the axial location X and the 
diameter ratio y = a/b. For four values of 7( = 0.01, 0.1, 0.4, 
and 0.8) and several axial locations (^=0.004, 0.006, 0.008, 
0.012, 0.02, 0.028), the growth rate gw(X,RK) was plotted 
against the disturbance dimensionless frequency w with Re as 
a parameter. The azimuthal wave number n was taken to be 
unity. From these plots (not shown here) neutral curves (Fig. 
1) were obtained. These curves show that for any value of 7, 
the range of unstable frequencies diminishes as the flow 
develops. Also, at a given axial location (fixed X), the flow 
becomes unstable at a lower Reynolds number in (generally) a 
smaller diameter ratio annulus. 

Figure 2 shows the variation of critical Reynolds number 

Rec based on gw(X,Rw) and the parallel flow theory against X 
with 7 as a parameter. It also contains the Rec -X curve for 
the pipe flow (7 = 0) for comparison with 7 = 0.01 case. It is 
obvious that the nonparallel effects reduce the critical 
Reynolds number considerably for any 7 and X. In fact, the 
behavior of Re(. - X curves appear to be quite different with 
the inclusion of nonparallel effects. Table 2 highlights some 
of these differences. For the sake of comparison, results were 
also found for an axisymmetric disturbance (« = 0). The 
analysis simplifies considerably in this case and one can, in 
fact, work in terms of the disturbance stream function \j/ (see 
[4] for the pipe flow case). It was found that while gv and g^ 
were little different from each other except very close to the 
entry section (.Y<0.002), they were larger than both g„ and 
gE for n = 0. Also, for given X and 7, both gv and g^ had their 
maxima at one radial location, say Ru. Table 2 also lists 
values of Ret.(for « = 0) corresponding to gv (X,RV) and the 
parallel-flow theory together with values of Rv. It is in-
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Fig. 1 Neutral curves based on g„ (X,RW) for various 7 and X. 
7 = 0.01; ,7 = 0.1; 7 = 0.4; ,7 = 0.8. 
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Fig. 2 Critical Reynolds number versus X. , based on gw(X,R); 
based on parallel-flow theory. 

Table 2 Critical Reynolds numbers 

7 

0.01 
0.1 
0.4 

0.8 

X 

0.008 
0.008 
0.004 
0.006 
0.008 
0.004 
0.006 
0.008 

Rec 

based on 

(« = D 
3440 
2400 
3330 
4200 
5000 
5270 
6880 
8400 

based on 
«„W?„) 

(« = 0) 

5800 
6250 
7800 
7700 
8200 

10000 
10850 
12100 

Rv 

0.22" 
0.35 
0.44 
0.51 
0.56 
0.7 
0.78 
0.85 

Re£.basec 

n = \ 

7050 
7275 
9350 
9000 
9650 

11200 
11550 
12425 

on parallel-flow 
theory 

« = 0 

6500 
7050 
9250 
8650 
9000 

11200 
11500 
11100 

"mean value (from the inner wall) as Ruchanges a little with Re and c 
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Fig. 3 Critical frequency versus X. 
based on parallel-flow theory. 

based on gw (X,RW); 

teresting to note from this Table that while developing flow in 
the annulus, taken as a parallel flow, is less unstable to 
asymmertic disturbance (n = \) in comparison to the 
axisymmetric disturbance (n = 0), the reverse is true when 
nonparallel effects are taken into account. 

Figure 3 shows the variation of critical frequency aic 

corresponding to gw(X,Rw) and the parallel flow theory for 
n = 1 against X with 7 as a parameter. It is observed that the 
nonparallel effects increase the critical frequency for all X 
and 7. However, in comparison to the large drop in critical 
Reynolds number, the critical frequency is only slightly in
creased by the nonparallel effects. 

Conclusions 
The nonparallel developing flow in a circular concentric 

annulus is found to be more unstable to asymmetric disturb
ances with an azimuthal wave number equal to unity than to 
the axisymmetric disturbances. The present results show that 
for such disturbances, the parallel flow theory overpredicts 
the critical Reynolds number by as much as 203 percent at 
X- 0.008 for 7 = 0.1. Thus considering the developing flow in 
ducts to be parallel for stability analysis is highly improper. 
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Introduction 

The vibration theory of beams has great importance in 
many engineering applications such as in the design of 
machines and structures. Therefore, a considerable number of 
papers are available on the out-of-plane vibration of arcs or 
curved beams, as well as straight beams. The fundamental 
equations of arcs or curved beams have been presented 
together with the solution to them in the book of Love [1]. 
Takahashi [2], Volterra and Morell [3,4], Chang and Volterra 
[5], and Suzuki, Aida, and Takahashi [6] studied the free out-
of-plane vibration of arcs and curved beams on the basis of 
the classical beam theory in which the rotatory inertia and 
shear deformation are not taken into account. Recently, Rao 
[7], Kirkhope [8], Suzuki and Takahashi [9], and Davis, 
Henshell, and Warburton [10] have analyzed rings and curved 
beams, and Irie, Yamada, and Takahashi [11, 12] have 
analytically studied arcs and curved beams of variable cross 
section. These recent studies have been based on the 
Timoshenko beam theory in which both of the rotatory inertia 
and shear deformation are taken into account. 

This paper presents an analysis of the free out-of-plane 
vibration of elastic arcs governed by the Timoshenko beam 
theory and by the specialized theories in which either or both 
of the rotatory inertia and shear deformation are taken into 
account. For this purpose, the equations of out-of-plane 
vibration of an arc are written in a matrix differential 
equation of the first-order by use of the transfer matrix of the 
arc. The transfer matrix is conveniently expressed as the series 
type solution to the equation, and the frequency equations are 
derived by the boundary conditions. The natural frequencies 
(the eigenvalues of vibration) of some arcs are calculated 
numerically by the application of the method and are com
pared with one another, from which the effects of the rotatory 
inertia and shear deformation on the vibration are studied. 

Theoretical Consideration 

We consider a uniform arc of radius of curvature of the 
neutral axis R. With the angular coordinate denoted by 8 and 
with the opening angle by a, the X - , Y - , and Z - axes are 
taken in radial, transverse, and tangential directions, 
respectively, as shown in Fig. 1. 

1. Timoshenko equations (TM). 

On the assumption that the shear center of the cross section 
coincides with the centroid, the equation of translational 
motion of the arc is written as 

dQJ 
Rcie 

and the equations of rotation are 

pAu2v*=0 

clM* V 
~+ Q.*+pIxu

2<p = 0 
Rdd R • x 

(1) 
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Fig. 3 Critical frequency versus X. 
based on parallel-flow theory. 

based on gw (X,RW); 

teresting to note from this Table that while developing flow in 
the annulus, taken as a parallel flow, is less unstable to 
asymmertic disturbance (n = \) in comparison to the 
axisymmetric disturbance (n = 0), the reverse is true when 
nonparallel effects are taken into account. 

Figure 3 shows the variation of critical frequency aic 

corresponding to gw(X,Rw) and the parallel flow theory for 
n = 1 against X with 7 as a parameter. It is observed that the 
nonparallel effects increase the critical frequency for all X 
and 7. However, in comparison to the large drop in critical 
Reynolds number, the critical frequency is only slightly in
creased by the nonparallel effects. 

Conclusions 
The nonparallel developing flow in a circular concentric 

annulus is found to be more unstable to asymmetric disturb
ances with an azimuthal wave number equal to unity than to 
the axisymmetric disturbances. The present results show that 
for such disturbances, the parallel flow theory overpredicts 
the critical Reynolds number by as much as 203 percent at 
X- 0.008 for 7 = 0.1. Thus considering the developing flow in 
ducts to be parallel for stability analysis is highly improper. 
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The vibration theory of beams has great importance in 
many engineering applications such as in the design of 
machines and structures. Therefore, a considerable number of 
papers are available on the out-of-plane vibration of arcs or 
curved beams, as well as straight beams. The fundamental 
equations of arcs or curved beams have been presented 
together with the solution to them in the book of Love [1]. 
Takahashi [2], Volterra and Morell [3,4], Chang and Volterra 
[5], and Suzuki, Aida, and Takahashi [6] studied the free out-
of-plane vibration of arcs and curved beams on the basis of 
the classical beam theory in which the rotatory inertia and 
shear deformation are not taken into account. Recently, Rao 
[7], Kirkhope [8], Suzuki and Takahashi [9], and Davis, 
Henshell, and Warburton [10] have analyzed rings and curved 
beams, and Irie, Yamada, and Takahashi [11, 12] have 
analytically studied arcs and curved beams of variable cross 
section. These recent studies have been based on the 
Timoshenko beam theory in which both of the rotatory inertia 
and shear deformation are taken into account. 

This paper presents an analysis of the free out-of-plane 
vibration of elastic arcs governed by the Timoshenko beam 
theory and by the specialized theories in which either or both 
of the rotatory inertia and shear deformation are taken into 
account. For this purpose, the equations of out-of-plane 
vibration of an arc are written in a matrix differential 
equation of the first-order by use of the transfer matrix of the 
arc. The transfer matrix is conveniently expressed as the series 
type solution to the equation, and the frequency equations are 
derived by the boundary conditions. The natural frequencies 
(the eigenvalues of vibration) of some arcs are calculated 
numerically by the application of the method and are com
pared with one another, from which the effects of the rotatory 
inertia and shear deformation on the vibration are studied. 

Theoretical Consideration 

We consider a uniform arc of radius of curvature of the 
neutral axis R. With the angular coordinate denoted by 8 and 
with the opening angle by a, the X - , Y - , and Z - axes are 
taken in radial, transverse, and tangential directions, 
respectively, as shown in Fig. 1. 

1. Timoshenko equations (TM). 

On the assumption that the shear center of the cross section 
coincides with the centroid, the equation of translational 
motion of the arc is written as 
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y iv'.Q") 

(3) 

where p is the mass per unit volume, A is the cross-sectional 
area, Ix and J,, respectively, are the second moment and polar 
moment of area of the arc, and u> is the circular frequency. On 
the basis of the Timoshenko beam theory, the bending 
moment and torsional moment, respectively, are given by 

EI.. ( d<p\ „ GC, / <# \ 

and the shearing force is 
cte 

•KGA 
\ Rdd I 

(6) 

in terms of the transverse deflection u*, the angle of rotation 
ip due to pure bending and the angle of torsion \j/. Here, the 
sets of variables (<p, M *), (v*, Q *), and (^, 7*) are defined to 
be of positive sign in the X — , Y - and Z -directions, 
respectively. The quantity E is Young's modulus, G is the 
shear modulus and Cz is the St. Venant torsional constant of 
the cross section. The parameter K is the numerical factor 
depending on the shape of cross section, which is 0.85 for 
rectangular cross section and 0.89 for circular cross section 
for an arc of Poisson's ratio v = 0.3 [13]. 

The boundary conditions of the arc are written as M* = 
Q* = T* = 0 at free end, v* = M* = T* = 0 at hinged end, 
and <p = v* = 4/ = 0 at clamped end, respectively. 

Equations (l)-(6) can be written in a matrix differential 
equation 

Ye[m] -[M]lZ(d)\ 

where 

and 

\Z{6)\ {<P v +MxQyT]T 

(7) 

(8) 

[M]-

- 1 0 

E 1 

kG^j. 
0 r 

0 

A 2 -^ 

• A 2 (J 1 3 V 

0,05 

Fig. 2(a) 

0.10 0.15 

1/SX 

Clamped-clamped arc 

0.20 

0,20 

Fig. 2(b) Free-clamped arc 

(9) 

Fig. 2(c) Hinged-riinged arc 

Fig. 2 Eigenvalues \ of out-of-plane vibration of arcs: 
a = 120 deg ; (TM), ; (Nl), 

;(BE) 

0.20 

= 0.3, = 0.89, 
(NS), 
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Here, for simplicity of the analysis, the following 
dimensionless variables have been introduced: 

«=^"*, (MV,D = J- (M; ,7- ) , Q„=-|-e; (io) 

, AR2 , AR 
si= , s; - — 

I • I 

2 GC, 

and 

A2 = 
pAR*a2 

EIr 

(11) 

(12) 

The quantities sx and sy are the slenderness ratios, /x is the 
rigidity ratio of the arc and A denotes a frequency parameter. 

2. Equations without rotatory inertia taken into account 
(NI). 

When the rotatory inertia of the arc is not taken into ac
count, the equations of vibration are also given by (7) in 
which the element M41 of the matrix [At] is taken as zero. 

3. Equations without shear deformation taken into account 
(NS). 

In this case, the equations are given by (7) in which the 
element M25 is taken as zero. 

4. Bernoulli-Euler equations (classical beam theory) (BE). 

In the classical beam theory in which both of the rotatory 
inertia and shear deformation are not taken into account, the 
equations are given by (7) in which both of the elements M4l 

and M25 are taken as zero. 
The state vector [ Z(6)} can be expressed as 

{Z{8)]=[T(6)]{Z{6)} (0>O) (13) 

by using the transfer matrix [T{6)] of the arc. The substitution 
of (13) into (7) yields 

^-AT(8)] = [M][T(6)] (14) 
dd 

The transfer matrix can be conveniently expressed as the 
power series type solution to (14), 

[r(0)]=exp([M]0) 

= [i\ + -^[M]d+^[M]2e2+ . . . 

+ — [M]"d" (15) 

Numerical difficulty arises in the calculation of [T (9)] given 
by (15) if the opening angle a is too large. However, it can be 
overcome by subdividing the arc into 5-10 small elements at 
most and calculating the transfer matrices for each element. 
The entire structure matrix is obtained by assembling the 
matrices of these elements. 

The substitution of (13) into a given set of the boundary 
conditions yields the frequency equation of the arc with only 
the elements of the matrix [T(a)] necessary for the 
calculation. 

Numerical Calculation and Discussion 
Figure 2 shows the first four eigenvalues X = A/sv of 

vibration of clamped-clamped, free-clamped, and hinged-
hinged arcs with the angle a = 120 deg obtained by the 
method. The eigenvalues X of these vibrations become larger 
in that order for the TM-, NI-, NS-, and BE-vibrations ac
cording that the rotatory inertia or shear deformation is or is 
not taken into account. The eigenvalues of the Nl-vibration 
are comparatively near to those of the TM-one, and the values 

v 
(w*>/5 

W.4X/5 

<TM) 

Ai=q,509 

A2 =11.79 

V -1~ 
0/5 0 ' 
1V100 1 : 

V -IF 
0/5 0 , 
if/100 1 • 

(TM(T) ) 

Ai=23.30 

A2 39.70 

A3 = 57,<6 

Fig. 
s„ = 

10" 80° 120" 0- '10° SO" 120° 

An 50.1)6 A„ 75.61 

Mods shapes of a clamped-clamped arc: >< = 0.3, K = 0.89, 
sy =20 , a = 120 deg. - - W i ; ^, -

of the NS-vibration are near to those of the BE-one. The 
difference among these eigenvalues is large in higher modes, 
and becomes larger with a decrease of the slenderness ratio sx. 
Only in clamped-clamped arcs, torsion type vibrations [(f)-
vibrations], with the frequencies X(7)i, X(7)2, . . . in which 
the angle of torsion is dominant arise besides usual bending 
type vibrations in which the transverse deflection is dominant, 
as seen in Fig. 3. The eigenvalues X of the arcs become larger 
monotonically with a decrease of the ratio sx, except for the 
TM(T)- and NI(T)-vibrations of clamped-clamped arcs. In 
general, the eigenvalues of free-clamped and hinged-hinged 
arcs are smaller than those of clamped-clamped arcs, and the 
eigenvalues of the fourth modes change in a wave-like manner 
with the variation of the ratio sv. 
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Effects of a Rigid Circular Inclusion on 
States of Twisting and Shearing in Shallow 
Spherical Shells1 

E. Reissner2 and J. E. Reissner3 

Introduction 
An earlier paper on the subject of this Note [1] has com

plemented known results for transverse twisting and inplane 
shearing of flat plates by asymptotic results for the 
corresponding problems of spherical shells, for the case of 
shells which are thin enough to fall within the scope of the 
asymptotic solution procedure. The present Note extends the 
work in [1] by reducing the problem of the determination of 
stress concentration factors to a problem of solving four 
simultaneous linear equations, with the coefficients in these 
four equations being certain combinations of Kelvin functions 
of the second order, and by then deducing numerical values of 
stress concentration factors in the entire range of values of the 
parameter JX = Vl2(l — v2)a/\[Rh, involving wall thickness h 
and radius R of the shell, as well as Poisson's ratio v and the 
radius a of the rigid inclusion. 

Differential Equations and Boundary Conditions 
As in [1] we consider a shallow spherical shell, with middle 

surface equation z = H-r2/2R relative to base plane polar 
coordinates r, d, and with differential equations RBV4K-
V2w = 0 and RDV4 w + V2K = 0, where D=Eh2/l2(l - v2) 
and B= \/Eh. To be obtained are solutions of the two dif
ferential equations in the domain a < r < o o , with boundary 
conditions w = w„. = ur = ue = 0 at the inner edge r = a of the 
shell, and with conditions for r— oo or the form 
w—P/-2sin2tf/4(l -v)D, K-+Q for the problem of transverse 
twisting, and w—0, K-~ - l/2Sf2sin20 for the problem of 
membrane shearing. 

In accordance with the analysis in [1], appropriate ex
pressions for w and K are of the form w = 4> + x, K=ip — 
RDv2x where 

Pa2 sin26 

2(1-v)D 

Pa2 sin2d 

2(1 - v)-IT)B 

\=Sa2 B 

+ =• 

respectively, and 

-Pa2 

D 

-Sa2 sin2e( 

-sin20 

/ 1 r a1 \ 

\2V2+C^)' 

( C 2 T 0 -

i r 
2 a2 L 2 ~ ) • 

(1) 

(2) 

Sa' 
B\ ker2\r + c4kei2\r)sin2d, (3) 

*2(l-e)Z>' 
respectively, where X4 = \/R2BD and where the four constants 
of integration c„ are to be determined by means of the four 
stipulations that 0 + x = O, 4>,r + \,r = °> (1 - v)BR\j/,r 

+ \-4(V2x),r-\'t>dr = 0,and(l~v)BR^,l) + \-4(V2x),(,-
r\{\<t>,„dr)r-2dr = 0 for r = a. 

Determination of the Stress Concentration Factors kb 

and k,„. 
The introduction of 4>, '/'> and x from (l)-(3) into the four 

boundary conditions for r = a gives, with the help of certain 
transformations involving the Kelvin functions ker2/x and 
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kei2/x, where /x = Xa, the following systems of four 
simultaneous equations for the four quantities c,, c2

+, c3, c4, 
where c2=c2 for the problem of membrane shear, and 
c2=c2 + |it2/12(l + y) for the problem of transverse twisting. 

c, 

1 

- 2 

1 M
2 

2 \ + v 

l + v 

c2
+ 

0 

0 

4 

- 2 

c3 

ker2n 

ixkerifi 

- kei2 jx 

— jxkei{ /J, 

c4 

kei2tx 

\xkei'2 ix 

ker2jx 

\xker2 n 

TT 

1 

~ 2 

- 1 

0 

0 

MS 

0 

0 

1 
~ 2 

- 1 

In contrast to the problems of the circular hole [2], where 
the concentrations of stress involve the edge values of the 
tangential resultants and couples Nog and Mm, the problems 
of the rigid circular insert involve the edge values of the radial 
resultants and couples Nrr andM r r , in the form [1] 

*'=(^TK(fl^)'*-=(^^K(fl'J)- (4) 

The numerical determination of the values of kb and k,„ is 
facilitated by observing that the defining relations for M,r and 
Nrr, in conjunction with the boundary conditions for r = a, 
imply that when r = a then 

\{\4>,mdr)r-2dr-r-'\<i>dr 
Mn.= -D\72x,Nrr = 

{\+v)BR 
and therewith, for the problem of transverse twisting 

kh = - v-
l 

(c3kei2lx-c4ker2ix),k„ 
M2(l+2c,) 

V l 2 ( l ^ 2 ) 
and for the problem of membrane shear 

v 
k„ = 

Vr 
(c3kei2ix-c4ker2/x), k,„ = -

l + v' 

(5) 

(6) 

(7) 

Description of Numerical Procedure 
The values of the zero-order Kelvin functions and their 

derivatives for /x<100 were obtained, as in [2], from IMSL 
subroutines [3]. For larger ix, these functions were obtained 
from the asymptotic expressions in Nosova [4].4 While we 
obtained numerical results up to /x=1000 we have included 
only one of them, for ft = 200, in Table 1. As in [2], the form 
of the system of equations to be solved for the unknowns c, is 
such as to make the expressions for the stress-concentration 
factors in terms of the c, invariant to any factor multiplying 
all Kelvin functions and derivatives appearing, and we deleted 
the factors exp ( - ^V2) from the asymptotic expressions and 
so prevented underflow problems for larger /x. The second-
order Kelvin functions and derivatives were obtained by the 
usual linear recursion relations [4, 5]. 

Discussion of Results 

Tables 1 and 2 summarize the consequences of a numerical 
evaluation of equations (6) and (7) on the basis of a solution 
of the four by four systems of equations for the coefficients 
c„. Our numerical calculations confirm the previously stated 
nature of the one-term asymptotic results for sufficiently large 
values of /x,5 and they furthermore brought to our attention 

We found that equation (28) for kei' in [4] is in error by a factor of - 1. 
After making a correction in the earlier formula for kb for the problem of 

membrane shear, which should have been kh ~fi /2(1 - v) in place of the ex
pression n 2 /2( l + x) in equation (38) in [1]. 
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Table 1 Stress concentration factors for tranverse twisting 

M 

0 
0.1 
0.3 
0.5 
0.8 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 
15.0 
20.0 
250 
500 
75 

100 
200 

Asympt. 
10 

100 
200 

1,-0 

4.0 
4.016 
4.140 
4.377 
4.908 
5.362 
6.780 
8.545 

10.61 
12.96 
15.59 
18.47 
21.62 
25.02 
32.60 
41.18 
5078 
61.38 
72.98 

146.0 
244.1 
3672 

1358 
2973 
5214 

20430 

50 00 
5000 

20000 

h 

. , - 1 / 3 

6.0 
6.024 
6.214 
6.582 
7.413 
8.123 

10.34 
13.08 
16.28 
19.90 
23.93 
28.36 
33.18 
38.38 
49.92 
62.99 
77.56 
93.65 

111.9 
221.7 
369.7 
5553 

2045 
4473 
7838 

3O680 

75.00 
7500 

30000 

1,-1/2 

8.0 
8032 
8.289 
8.790 
9.924 

10.89 
13.91 
17.63 
21.97 
26.87 
3231 
38.28 
44.76 
51.76 
67.28 
84.83 

1044 
126.0 
149.5 
2974 
4954 
7434 

2733 
5973 

10460 
40920 

1000 
10000 
40000 

| i , - 0 

0.0 
0.013 
0.082 
0.186 

j 0.389 
'0.552 
1.053 
1.689 
2463 
3.376 
4.429 
5.625 
6.963 
8.443 

11.83 
15.80 
20.34 
2546 
31 15 
68.272 

119.8 
185.8 
7322 

1639 
2907 

11590 

2887 
2887 

11550 

*» 
— 1/3 

0.0 
0.019 
0.117 
0.256 
0.514 
0.714 
1.306 
2.034 
2.902 
3.916 
5.076 
6.385 
7.845 
9.455 

13.13 
17.41 
22.30 
27.80 
33.92 
73.65 

1287 
199.0 
780.4 

1744 
3091 

12310 

30.60 
3060 

12240 

— 1/2 

0.0 
0.025 
0.146 
0.316 
0.624 
0.858 
1.538 
2.361 
3.333 
4.461 
5.747 
7.195 
8.806 

10.58 
14.62 
19.37 
24.69 
30.72 
37.42 
80.88 

141.0 
217.8 
857.6 

1902 
3369 

13340 

33.30 
3333 

13330 

Table 2 Stress concentration factors for membrane shear 
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the fact that it should have been kb{0) = A/(\ - v) for the 
problem of transverse twisting, and &,„(0) = 4/(3 - v) for the 
problem of membrane shear, in place of the corresponding 
formulas with factors 2 and 8, respectively, in [1]. 

Additionally, our numerical calculations indicate, con
sistent with the results reported in [2], the existence of ap
preciable percentage differences between the exact numerical 
results and the consequences of the one-term asymptotic 
formulas, up to /t-values of about 100. They furthermore 
indicate that the surmise in [1] that these asymptotic results 
"apply when the parameter fi is sufficiently large, say larger 
than about 10, ... " must be considered as being in part too 
optimistic, considering the fact that when /x=10 the dif
ferences between asymptotic and exact results are of the order 
of 10 percent for the problem membrane shear and for the 
values of k,„ for transverse twisting, but that insofar as the 
values of kb for this latter problem are concerned there 
remain differences of the order of 40 to 50 percent which 
decay to about 4 to 5 percent when ^=100 and to about 2 
percent when p. = 200. 
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Spatial Bifurcation of a Prestressed Rod 

P. Vielsack1 

Let us assume a straight elastic rod of length / with flexural 
rigidities A and B and torsional rigidity C. These and the 
following quantities refer to the principal system of flexure 
and torsion. The corresponding unit vectors e, and e2 co
incide with both principal axes of the cross section, and e3 is 
directed along the tangent to the center line of the rod (Fig. 1). 

As an example for prestresses we imagine that the rod is 
heated partially on its surface, parallel to the center line. Then 
the rod tends to become a circular arch in the e2 — e3 -plane 
with constant precurvature K about the e j -ax i s . Now, if 
temperature-induced strains are prevented there will again 
result an ideal straight rod this time, however, with 
prestresses. The intensity of these stresses is proportional to 
and thus can be measured by the magnitude of the precur
vature K of the unconstrained arch. If, in addition, external 
conservative compressing forces are applied at both ends of 
the rod, we are interested in the influence of the prestresses on 
buckling. 

The starting point of the consideration are Kirchhoff's 
general equations in tensor notation [1] 

F + toxF= - q , 
M + u)xM + e 3 x F = - m , 

J'(to-u>0) = M, (1) 

where q or m are the external, continuous force vector or 
moment vector, respectively, F or M are the internal force 
vector or moment vector, respectively, co0 or u> are the 
rotational vector of the principal system of coordinates in the 
state without tension or the loaded state, respectively, and J is 
a diagonal tensor with elements A, B, and C. A dot indicates 
differentiation with respect to the arc length 5 of the center 
line. Considering only problems with vanishing continuous 
loadings 

q = 0, 

m = 0, (2) 

we can specify boundary conditions for the components of the 
rotational vector co. If s0 is the arbitrarily chosen origin of the 
arc length s we get 

w(s0) = o>(s0 +2l/n); n = l,2... (3) 

which corresponds to periodic solutions of the nonlinear 
system of equations (1). A global equilibrium condition yields 

¥2(s0) = N2 (4) 

for the internal forces with N= const. As mentioned in the 
foregoing, we have to consider the special problem of a 
circular arch with 

a)0 = k 0 , 0 ] r (5) 
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the fact that it should have been kb{0) = A/(\ - v) for the 
problem of transverse twisting, and &,„(0) = 4/(3 - v) for the 
problem of membrane shear, in place of the corresponding 
formulas with factors 2 and 8, respectively, in [1]. 

Additionally, our numerical calculations indicate, con
sistent with the results reported in [2], the existence of ap
preciable percentage differences between the exact numerical 
results and the consequences of the one-term asymptotic 
formulas, up to /t-values of about 100. They furthermore 
indicate that the surmise in [1] that these asymptotic results 
"apply when the parameter fi is sufficiently large, say larger 
than about 10, ... " must be considered as being in part too 
optimistic, considering the fact that when /x=10 the dif
ferences between asymptotic and exact results are of the order 
of 10 percent for the problem membrane shear and for the 
values of k,„ for transverse twisting, but that insofar as the 
values of kb for this latter problem are concerned there 
remain differences of the order of 40 to 50 percent which 
decay to about 4 to 5 percent when ^=100 and to about 2 
percent when p. = 200. 
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Spatial Bifurcation of a Prestressed Rod 

P. Vielsack1 

Let us assume a straight elastic rod of length / with flexural 
rigidities A and B and torsional rigidity C. These and the 
following quantities refer to the principal system of flexure 
and torsion. The corresponding unit vectors e, and e2 co
incide with both principal axes of the cross section, and e3 is 
directed along the tangent to the center line of the rod (Fig. 1). 

As an example for prestresses we imagine that the rod is 
heated partially on its surface, parallel to the center line. Then 
the rod tends to become a circular arch in the e2 — e3 -plane 
with constant precurvature K about the e j -ax i s . Now, if 
temperature-induced strains are prevented there will again 
result an ideal straight rod this time, however, with 
prestresses. The intensity of these stresses is proportional to 
and thus can be measured by the magnitude of the precur
vature K of the unconstrained arch. If, in addition, external 
conservative compressing forces are applied at both ends of 
the rod, we are interested in the influence of the prestresses on 
buckling. 

The starting point of the consideration are Kirchhoff's 
general equations in tensor notation [1] 

F + toxF= - q , 
M + u)xM + e 3 x F = - m , 

J'(to-u>0) = M, (1) 

where q or m are the external, continuous force vector or 
moment vector, respectively, F or M are the internal force 
vector or moment vector, respectively, co0 or u> are the 
rotational vector of the principal system of coordinates in the 
state without tension or the loaded state, respectively, and J is 
a diagonal tensor with elements A, B, and C. A dot indicates 
differentiation with respect to the arc length 5 of the center 
line. Considering only problems with vanishing continuous 
loadings 

q = 0, 

m = 0, (2) 

we can specify boundary conditions for the components of the 
rotational vector co. If s0 is the arbitrarily chosen origin of the 
arc length s we get 

w(s0) = o>(s0 +2l/n); n = l,2... (3) 

which corresponds to periodic solutions of the nonlinear 
system of equations (1). A global equilibrium condition yields 

¥2(s0) = N2 (4) 

for the internal forces with N= const. As mentioned in the 
foregoing, we have to consider the special problem of a 
circular arch with 

a)0 = k 0 , 0 ] r (5) 
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^ A e 2 

Fig. 1 Deformed rod 

Once equation (5) is specified, the nonlinear boundary 
value problem is analogous to the problem of stationary 
periodic motions of a heavy gyrostat [2]. This is a system of 
two rigid bodies, the so-called carrier, and a symmetric rotor 
fixed on the carrier. This system is suspended as a pendulum 
at a point on one principal axis of inertia of the total system. 

In the particular case characterized by (5), we consider a 
heavy gyrostat in which the rotor axis is directed along the 
principal axis of inertia mentioned in the foregoing. Then the 
following special and simple motion exists: the carrier does 
not move at all and the rotor rotates with constant angular 
velocity, its axis being in a vertical position. Using the 
analogy, we can therefore construct as a solution of the rod 
problem, 

M=[-KA,0,0]T, 

w= [0,0,0]T , 
¥ = [0,0,-N]T. (6) 

Equation (6) describes the special state of equilibrium of an 
originally circular arch bent by moments M^ = - K A into a 
straight form and compressed by forces F3 = —N. To in
vestigate the uniqueness of this configuration we apply in the 
sense of bifurcation theory small perturbations to each 
quantity in question. Thus it is evident that bifurcation 
theory in elasticity is analogous to the theory of small 
oscillations in the field of kinetics. Inserting the new state of 
equilibrium 

M = [-KA+MitM2,M3]
T, 

co= [c5j ,c32,co3] r, 
V = [FltF2,-N+F3y (7) 

into the boundary value problem, equating only linear terms 
in all perturbations, and eliminating the lateral forces Fx and 
F2, and the torsion aJ3 we get three linear decoupled boundary 
value problems in scalar notation. The first one is 

i? 3=0; Fi(s0) = 0. (8) 

This confirms the well-known assumption of buckling theory, 
that the normal forces do not change at the bifurcation point. 
The second one is the classical eigenvalue problem 

Aioi+Nu^O; c51(0) = oi1(/) = 0 (9) 

for plane buckling. This is analogous to a small pendulum 
motion of the carrier. It confirms the well-known analogy 
between the plane motion of a pendulum and the plane 
buckling of a straight and untwisted rod. If we choose the 
second Euler-case the critical load is 

^ ' ^ ( T ) 2 - (10) 

Evidently, plane buckling is not influenced by the prestresses 
considered. The third one is also an eigenvalue problem 

/ (AK)2 \ 
Ba2 + \N+L-£-)u2=0l- u2(0) = u2V) = 0, (11) 

which describes lateral buckling. In the sense of the analogy 
we get a precessional motion of the carrier, i.e., a spatial 

motion of the rotor axis with constant angular velocity on a 
circular cone about the vertical. 

The buckling phenomenon of the rod can best be discussed 
for a rod with equal flexural rigidities A = B. As an example 
we take a rod with circular cross section, for which the ratio 
can be given easily: A/C = \ + v(v = Poisson's constant). 
Such a rod without prestresses is free to buckle in any 
direction normal to its center line. In the case considered, 
however, buckling always occurs in the direction normal to 
the original plane of the arch combined with a torsional 
movement of the cross sections. If we suppose, for instance, 
fork bearings in (11), we arrive at a spatial buckling load 

N 2 = N 1 ( l - ( l + ^ ) ( ^ ) 2 ) . (12) 

For nonvanishing prestresses we thus have a smaller critical 
load thanEuler's. 
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Two-Dimensional Theory of Incompressible 
Flow Over Inlets 

M. K. Huang1 

On the basis of the assumption of incompressible inviscid 
fluid, a linearized solution has been derived for the two-
dimensional flow over an inlet of general form. The theory 
can be used to estimate the external drag of the inlets with 
sharp lips at subsonic speeds. 

1 Introduction 
To reduce the wave drag at supersonic speeds, the air inlet 

with sharp lips is often used on a supersonic aircraft. It is well 
known that the external drag of the inlet consists of the 
pressure drag and the additive drag in inviscid flow. If there is 
no separation and no shock wave in the flow, it can be shown 
that the external drag is just equal to zero (See [1, 2]). This 
statement applies to the inlet of round lip without flow 
separation. For the inlet with sharp lip, however, the flow 
separation may happen and the external drag must be in
creased because of the loss of the suction at the lip. In view of 
the fact that the pressure drag including the lip suction just 
cancels the additive drag in subsonic flow, the magnitude of 
the external drag has to be equal to that of the lost suction at 
the lip, i.e., 

De=Xs (1) 

To my knowledge, there has been no simple method to 
estimate the suction for an inlet with general form. This paper 
will give an analytical solution to this problem for two-
dimensional inlets with very general form in incompressible 
flow. For high subsonic or supersonic oncoming flow, the 
related problem is quite difficult because of the existence of 
the transonic flow field. One cannot solve it in analytical 
form. Some numerical methods (See [3-5]) have been 
developed for this purpose. 
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Fig. 1 Deformed rod 

Once equation (5) is specified, the nonlinear boundary 
value problem is analogous to the problem of stationary 
periodic motions of a heavy gyrostat [2]. This is a system of 
two rigid bodies, the so-called carrier, and a symmetric rotor 
fixed on the carrier. This system is suspended as a pendulum 
at a point on one principal axis of inertia of the total system. 

In the particular case characterized by (5), we consider a 
heavy gyrostat in which the rotor axis is directed along the 
principal axis of inertia mentioned in the foregoing. Then the 
following special and simple motion exists: the carrier does 
not move at all and the rotor rotates with constant angular 
velocity, its axis being in a vertical position. Using the 
analogy, we can therefore construct as a solution of the rod 
problem, 

M=[-KA,0,0]T, 

w= [0,0,0]T , 
¥ = [0,0,-N]T. (6) 

Equation (6) describes the special state of equilibrium of an 
originally circular arch bent by moments M^ = - K A into a 
straight form and compressed by forces F3 = —N. To in
vestigate the uniqueness of this configuration we apply in the 
sense of bifurcation theory small perturbations to each 
quantity in question. Thus it is evident that bifurcation 
theory in elasticity is analogous to the theory of small 
oscillations in the field of kinetics. Inserting the new state of 
equilibrium 

M = [-KA+MitM2,M3]
T, 

co= [c5j ,c32,co3] r, 
V = [FltF2,-N+F3y (7) 

into the boundary value problem, equating only linear terms 
in all perturbations, and eliminating the lateral forces Fx and 
F2, and the torsion aJ3 we get three linear decoupled boundary 
value problems in scalar notation. The first one is 

i? 3=0; Fi(s0) = 0. (8) 

This confirms the well-known assumption of buckling theory, 
that the normal forces do not change at the bifurcation point. 
The second one is the classical eigenvalue problem 

Aioi+Nu^O; c51(0) = oi1(/) = 0 (9) 

for plane buckling. This is analogous to a small pendulum 
motion of the carrier. It confirms the well-known analogy 
between the plane motion of a pendulum and the plane 
buckling of a straight and untwisted rod. If we choose the 
second Euler-case the critical load is 

^ ' ^ ( T ) 2 - (10) 

Evidently, plane buckling is not influenced by the prestresses 
considered. The third one is also an eigenvalue problem 

/ (AK)2 \ 
Ba2 + \N+L-£-)u2=0l- u2(0) = u2V) = 0, (11) 

which describes lateral buckling. In the sense of the analogy 
we get a precessional motion of the carrier, i.e., a spatial 

motion of the rotor axis with constant angular velocity on a 
circular cone about the vertical. 

The buckling phenomenon of the rod can best be discussed 
for a rod with equal flexural rigidities A = B. As an example 
we take a rod with circular cross section, for which the ratio 
can be given easily: A/C = \ + v(v = Poisson's constant). 
Such a rod without prestresses is free to buckle in any 
direction normal to its center line. In the case considered, 
however, buckling always occurs in the direction normal to 
the original plane of the arch combined with a torsional 
movement of the cross sections. If we suppose, for instance, 
fork bearings in (11), we arrive at a spatial buckling load 

N 2 = N 1 ( l - ( l + ^ ) ( ^ ) 2 ) . (12) 

For nonvanishing prestresses we thus have a smaller critical 
load thanEuler's. 
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Two-Dimensional Theory of Incompressible 
Flow Over Inlets 

M. K. Huang1 

On the basis of the assumption of incompressible inviscid 
fluid, a linearized solution has been derived for the two-
dimensional flow over an inlet of general form. The theory 
can be used to estimate the external drag of the inlets with 
sharp lips at subsonic speeds. 

1 Introduction 
To reduce the wave drag at supersonic speeds, the air inlet 

with sharp lips is often used on a supersonic aircraft. It is well 
known that the external drag of the inlet consists of the 
pressure drag and the additive drag in inviscid flow. If there is 
no separation and no shock wave in the flow, it can be shown 
that the external drag is just equal to zero (See [1, 2]). This 
statement applies to the inlet of round lip without flow 
separation. For the inlet with sharp lip, however, the flow 
separation may happen and the external drag must be in
creased because of the loss of the suction at the lip. In view of 
the fact that the pressure drag including the lip suction just 
cancels the additive drag in subsonic flow, the magnitude of 
the external drag has to be equal to that of the lost suction at 
the lip, i.e., 

De=Xs (1) 

To my knowledge, there has been no simple method to 
estimate the suction for an inlet with general form. This paper 
will give an analytical solution to this problem for two-
dimensional inlets with very general form in incompressible 
flow. For high subsonic or supersonic oncoming flow, the 
related problem is quite difficult because of the existence of 
the transonic flow field. One cannot solve it in analytical 
form. Some numerical methods (See [3-5]) have been 
developed for this purpose. 
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2 Theory 
We consider a two-dimensional inlet with a ramp as shown 

in Fig. 1, where U0 is oncoming flow velocity, U, the 
downstream velocity inside the inlet, and BL, CK, and FK are 
the straight lines parallel to the axis x. Assume that the flow is 
incompressible, inviscid, and irrotational so that the complex 
variable method can be used. The flow field in physical plane 
can be considered as the superposition of the basic flow with 
uniform speed U0 and the perturbation with the velocity 
components u and v in the directions of x and.y, respectively. 
Under the assumption of small perturbation, the boundary 
conditions can be applied on the cut LBACK which is parallel 
to the x axis and on the x axis itself, as shown in Fig. 2(a). The 
boundary conditions can be formulated as 

v=U, 
\ dx A 

V dx A. 

on BAC, 

on EF, 

and 
v = 0 on CKF and ELB. 

(2) 

We denote the complex velocity of the perturbation by W 
= u — iv. To determine W, we first use the transformation 
(See [6]) 

z-ih = [h/(a + k)*]lt-a-(a + k)\og[{{+k)/(a + k)]} (3) 

to map the upper half of the physical plane z=x + iy with cut 
LAK into the upper half of the plane f =£ + »;, as shown in 
Fig. 2(b). Here a and k are determined by 

(a + *) log[(A-+l ) / (*- l ) ]=2 

c=[h/(a + k)Tr]{l-a-(a + k)log[(l+k)/(a + k)]} 
(4) 

where c is defined in Fig. 1. According to the calculation, the 
constant k has the value very close to 1. For instance, 
A: =1.0001 and 1.000001 correspond to c/h = 2.10 and 3.45, 
respectively. Then we only need to solve the boundary value 
problem of analytical functions on the half plane. The 
solution can be given by the Schwartz's formula as 

W= 
1 r 1 ° W * /cowl 1 (•/ ° \ dX / r a 

~ d t - — \ • 
7 T J - 1 / _ f IT Je t-l t-K 

xdt + 
Nn 

i r ( r - a ) 
(5) 

where the last term on the right-hand side is a doublet which 
simulates the singularity of square root at the lip and does not 
violate the boundary conditions that the first two terms have 
already satisfied. 

To determine the strength of the singularity N0, we take a 
circle with the radius tended to infinity as a control surface in 
the physical plane which has been extended symmetrically into 
the lower half, as shown in Fig. 3. The mass conservation law 
gives the identity 

vnds = 2[UiH+(U0-Ui)hl] (6) 

where v is the vector of the perturbation velocity and n the 
unit outward normal to the control surface Si. Equation (6) 
shows that there exists a source at infinity of the physical 
plane with the rate of volume flux equal to 2[[/ , / /+ (U0 -
U,) h i ], so that the expansion of W should contain the term 

[UlH+(U0-Ui)hi\/(ia) (7) 

Fig. 1 Typical two-dimensional inlet 

Y 

(A) Z = X + iY PLANE A 

L E 

B L 
C l K 

F j K 
-^x 

f = H>? PLANE 

L E F K C A B 
• f 

-k - I a I 
Fig. 2 Physical plane z = x + iy and transformation p l a n e f = f + /^ 

\ \ ̂  

— » l 
\ 
\ 
\ 
\ 

JJi 
2H 2h, 

7 

. ^^ ^ 
Fig. 3 Sketch of the control surface 

After expanding the expression (5) and comparing with the 
expression (7), we obtain 

N0 = v(a + k)Uo[(l- ^ ^ 1 

-s( ioB^i)(r. (•§)«-* 
)e \ dx /ramp / U0h J 

At the lip of the inlet, we have the approximation 

W hVlN, 
°- (Q) 

U0 (2-K)'A-w(a + k)U0(z-ih)'A 

This can be used to determine the strength of the singularity at 
the lip. With the same method as that for the calculation of 
the leading edge suction in thin wing theory [8], the suction 
coefficient can be obtained as 

Cs=Xs/(q0Ac) = (ms-m)2 (10) 

where/I c =h represents the capture area of the inlet, q0 is the 
dynamic pressure of free stream; m, the mass-flow ratio of the 
inlet, is defined by 

#» = [[/,-(A, -H)]/(U0h) (11) 

and ms is given by 

hi 

h 

}e \ dx /ramp J 
(12) 
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/c dt 

Fig. 4 log p + 1)/(ft - 1 ) ] as a function of c/(2h) 

Here ws can be considered as such mass-flow ratio that there 
exists smooth flow without separation at the sharp lip. 

The relationship between log [(k+\)/(k- 1)] and c/(2h) is 
given in Fig. 4, and the integral JL, (dy/dx)cowl dt as a 
function of c/(2h) is given in Fig. 5 for the cowls with straight 
and parabolic shapes. For the calculation of the second in
tegral in equation (12), we need to know the relationship 
between x and t on the ramp, which is given in Fig. 6. 

3 Applicaton and Discussion 
As the first example we consider the simplest case with 

h = hi a n d / / = 0 . Wehave/n t = l and 

Cs = (\-mf (13) 

This is exactly the same as that for Pitot-inlet with constant 
section at low speeds (See [7]). The subsonic version for such 
an inlet has been given in [2]. We can see from the comparison 
between equations (10) and (13) that the expression of Cs in 
terms of m for general inlets can be obtained from equation 
(13) by (1 +m — ms) insteady of m. This approach is exact in 
our approximation for incompressible flow and could be 
considered as a reasonable approximation for subsonic flow. 

The second example is shown in Fig. 7. With the use of 
Figs. 4-6 the computation result is shown by the solid line in 
Fig. 7. Here the dashed line shows the result for the ramp 
surface of all 5 deg. 

In conclusion, it should be noted that: 

1. What the inside wall of an inlet corresponds to is only a 
little part of the real axis in f plane, so that there is only a little 
contribution of the inside shape to the two integrals in 
equation (12). Thus, the inside shape of the inlet has only a 
little effect on the results. 

2. The theory is based on the assumption of small per
turbation. One might suppose that the results obtained would 
be applicable only to the case that U, is close to U0. However, 
in view of the previous conclusion, and the fact that the exact 
mass conservation law was used in equation (6), the results 
should also apply to the case of rather small mass-flow ratio, 
which has been proved for the first example. 
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Here ws can be considered as such mass-flow ratio that there 
exists smooth flow without separation at the sharp lip. 
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given in Fig. 4, and the integral JL, (dy/dx)cowl dt as a 
function of c/(2h) is given in Fig. 5 for the cowls with straight 
and parabolic shapes. For the calculation of the second in
tegral in equation (12), we need to know the relationship 
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This is exactly the same as that for Pitot-inlet with constant 
section at low speeds (See [7]). The subsonic version for such 
an inlet has been given in [2]. We can see from the comparison 
between equations (10) and (13) that the expression of Cs in 
terms of m for general inlets can be obtained from equation 
(13) by (1 +m — ms) insteady of m. This approach is exact in 
our approximation for incompressible flow and could be 
considered as a reasonable approximation for subsonic flow. 

The second example is shown in Fig. 7. With the use of 
Figs. 4-6 the computation result is shown by the solid line in 
Fig. 7. Here the dashed line shows the result for the ramp 
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contribution of the inside shape to the two integrals in 
equation (12). Thus, the inside shape of the inlet has only a 
little effect on the results. 

2. The theory is based on the assumption of small per
turbation. One might suppose that the results obtained would 
be applicable only to the case that U, is close to U0. However, 
in view of the previous conclusion, and the fact that the exact 
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Fig. 1 Normalized stress intensity at inner edge of crack 

cracks at a bimaterial interface is considered. The effects of 
frequency as well as inertia and rigidity ratios on the stress 
intensities at the crack tips are determined. Additionally, the 
results for a single crack are obtained as a limiting case. 

Formulation 

The geometry of two dissimilar materials with a pair of 
colinear cracks along the interface is shown in Fig. 1. The 
composite is assumed to be excited by a harmonic plane shear 
wave generated from deep within material 2 and at normal 
incidence with the cracks. On account of symmetry with 
respect to the plane x = 0 we consider only the portion of the 
composite 0<x<<». Hereafter the subscript j — 1, 2 refers to 
material 1 (y>0) and2(y<0) , respectively. 

Let Wj represent the antiplane displacement associated with 
the waves scattered by the cracks, and let r,y = ̂  Wj_,-, i=x,y 
represent the associated stress components. Omitting the time 
factor e"'"'', the problem for determining Wj may be specified 
as follows 

{
CO 

0 
(9) 

R(Z) = aia2/(ci2+K0ti), K = iil/fo, (10) 

in which a, = (£2 - 7 2 ) 1 7 2 , a 2 = ( £ 2 - l ) " 2 , and y = kl/k2 

= c2/c]. In addition, for single valuedness w' (s) is subject to 
the constraint condition 

w' (s) ds = 0, e>0. (ID 

Equations (6) and (11) can be treated numerically by the 
Gauss-Chebyshev technique [3], First, however, the equations 
are transformed to the new set of variables 

(z, t) 
2 1+e 

(x,s)-- ; w'(s)=v(t) (12) 

V2Wj+kj W: = 0 
Ty]=Ty2=T(x), 0<*<OO, y = 0 

T(X) = — PO, e<x<\, y = 0 

wl=w2, 0<X<e, l<X<oo, y = 0 

T =o , x = 0. 

(1) 

(2) 

(3) 

(4) 

(5) 

In (1) kj = w/Cj is the wave number of material j , and in (3)/?0 

is the stress induced by the incident wave. In addition, w, 
must satisfy the radiation condition as well as the usual crack-
tip conditions. 

By use of Fourier cosine transforms, it may be shown that 
equation (1) and conditions (2)-(5) reduce to the following 
integral equation 

l f ' t v ' f j ) i f 1 r 1 1 
— — ds+ - w' (s) +k2P(s,x,k2) ds 

TT Ji S — X 7T J ( LS+X 

-Po 

Ml 
(1 + K), e < x < l 

where 

w'(s) = —[w](s,0)-w2(s,0)} 
as 

P(s,x,k2) = L[k2 (s-x)]+L[k2 (s+x)] 

(6) 

(7) 

(8) 

- e 1-e 
In terms of the new variables (6) and (11) become 

1 (" v{t) , 1 f ' r 1 1 
- -dt+-\ v(t)\ +k*P*{t,z,k*)\ 
IT J -i t-z TT J - i lt + z+v J 

dt=-(l + K)p0/lil, \z\<\ (13) 

J(t)dt = Q (14) 

where k* = (1 - e)/2 k2, p = 2(l+ e)/(l - e), and 
P* (t,z,k*) = L[k*(t-z)]+L[k* (t + z+v)}. (15) 

Next, putting 

v(t) = -(l + K)p0/^u(t)(l-t2rw2 (16) 

where u(t) is bounded, and applying the Gauss-Chebyshev 
technique gives the algebraic system 

1 A r 1 1 •) 
*TLUP) + +k*P*[=l, 9=1,2 , 

...,N-l, (17) 

N 

L " P = 0 - (18) 
I 

where tp = cos[ir(2p- l)/2N],zq= cosirq/N, up=u(tp), and 
Ppq* = P*{tp, zq, k*). By choosing iV sufficiently large, the 
algebraic system may be made to approximate equations (13) 
and (14) to any desired degree of accuracy. For the case e = 0 
(c = 2) the algebraic system must be modified slightly to avoid 
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a stress or dislocation singularity at z= - 1 (* = 0). Such a 
singularity is removed if the constraint condition (14) is 
replaced by the condition y ( - l ) = 0. This condition is ap
proximated by setting uN — Q. 

Once the system is solved for up the stress intensities may be 
determined as follows 

/ l - e \ 1/2 

\K 
/ l - e \ 1/2 

/Pol = ( ^ J I "(1)1 (19) 

Numerical Results and Discussion 
The algebraic system (17-18) was solved by a complex 

computer program using /V=20; the kernels Ppg* were ap
proximated by Simpson's rule using 90 subdivisions. We 
considered the following cases: (a) Y = K = 1 , (b) 7=1.060, 
K = 0 . 3 1 6 , and (c) 7 = 0.713, K= 1.711. Case (a) corresponds to 
a homogeneous material, whereas cases (b) and (c) correspond 
to composites of aluminum/steel and wrought iron/copper, 
respectively, with material properties as given in [1]. The 
stress intensity was computed for each case for e = 0, 0.2, 0.5, 
0.8. Results for case (a) have been previously reported by Mai 
[2] for 6 = 0, and by Itou [4] for other values of e. Ac
cordingly, only partial results for case (a) are shown in Figs. 1 
and 2. These results agree to within about 3 percent with those 
previously reported. By comparison with case (a) the results 
of cases (b) and (c) illustrate the effects of inertia and rigidity 
ratios. It is seen that for the values considered, these ratios 
exert a relatively mild influence, giving a maximum difference 
of about 6 percent in the peak intensity compared to the 
homogeneous case. The results for 6 = 0 have been previously 
reported by Srivastava et al. [1]. Their results, however, 
predict peak intensities of approximately 2.4 and 2.2 for case 
(b) and case (c), respectively, giving a maximum difference of 
about 85 percent compared to the homogeneous case. If the 
results of [1] are in error, a possible source lies in the fact that 
equations (3.15) and (3.16) of [1] are not valid for u>t. In 
addition, it is noted that the comparison between the exact 
and approximate stress intensities as shown in [1], Fig. 2, are 
apparently inconsistent with a similar comparison reported by 
Mai [5], Fig. 2. 
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Wind Tunnel Corrections for Lifting Thin 
Airfoils 

A. Plotkin 

Introduction 

A detailed review of the subject of subsonic wind tunnel 
wall corrections is given in Garner et al. [1], For the idealized 
problem of steady two-dimensional incompressible potential 
flow, Tomotika [2] and Havelock [3] used conformal map
ping to obtain the exact solutions for flow past a flat plate and 
elliptic cylinder, respectively, placed between parallel walls. 
Goldstein [4] used conformal transformations and power 
series expansions to obtain an approximate solution for the 
thick cambered airfoil. In the foregoing references, the 
complicated exact solution is also expanded in a series in the 
ratio of chord to tunnel height. More recently, accurate 
numerical solutions using panel methods (surface singularity 
distributions) are readily obtainable. An early example of this 
approach is given in Giesing [5]. 

In the situation where the airfoil disturbance and the chord-
to-tunnel height ratio are both small, analytical results can be 
obtained directly with the use of thin-airfoil theory and an 
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Fig. 2 Normalized stress intensity at outer edge of crack 

a stress or dislocation singularity at z= - 1 (* = 0). Such a 
singularity is removed if the constraint condition (14) is 
replaced by the condition y ( - l ) = 0. This condition is ap
proximated by setting uN — Q. 

Once the system is solved for up the stress intensities may be 
determined as follows 

/ l - e \ 1/2 

\K 
/ l - e \ 1/2 

/Pol = ( ^ J I "(1)1 (19) 

Numerical Results and Discussion 
The algebraic system (17-18) was solved by a complex 

computer program using /V=20; the kernels Ppg* were ap
proximated by Simpson's rule using 90 subdivisions. We 
considered the following cases: (a) Y = K = 1 , (b) 7=1.060, 
K = 0 . 3 1 6 , and (c) 7 = 0.713, K= 1.711. Case (a) corresponds to 
a homogeneous material, whereas cases (b) and (c) correspond 
to composites of aluminum/steel and wrought iron/copper, 
respectively, with material properties as given in [1]. The 
stress intensity was computed for each case for e = 0, 0.2, 0.5, 
0.8. Results for case (a) have been previously reported by Mai 
[2] for 6 = 0, and by Itou [4] for other values of e. Ac
cordingly, only partial results for case (a) are shown in Figs. 1 
and 2. These results agree to within about 3 percent with those 
previously reported. By comparison with case (a) the results 
of cases (b) and (c) illustrate the effects of inertia and rigidity 
ratios. It is seen that for the values considered, these ratios 
exert a relatively mild influence, giving a maximum difference 
of about 6 percent in the peak intensity compared to the 
homogeneous case. The results for 6 = 0 have been previously 
reported by Srivastava et al. [1]. Their results, however, 
predict peak intensities of approximately 2.4 and 2.2 for case 
(b) and case (c), respectively, giving a maximum difference of 
about 85 percent compared to the homogeneous case. If the 
results of [1] are in error, a possible source lies in the fact that 
equations (3.15) and (3.16) of [1] are not valid for u>t. In 
addition, it is noted that the comparison between the exact 
and approximate stress intensities as shown in [1], Fig. 2, are 
apparently inconsistent with a similar comparison reported by 
Mai [5], Fig. 2. 
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Wind Tunnel Corrections for Lifting Thin 
Airfoils 

A. Plotkin 

Introduction 

A detailed review of the subject of subsonic wind tunnel 
wall corrections is given in Garner et al. [1], For the idealized 
problem of steady two-dimensional incompressible potential 
flow, Tomotika [2] and Havelock [3] used conformal map
ping to obtain the exact solutions for flow past a flat plate and 
elliptic cylinder, respectively, placed between parallel walls. 
Goldstein [4] used conformal transformations and power 
series expansions to obtain an approximate solution for the 
thick cambered airfoil. In the foregoing references, the 
complicated exact solution is also expanded in a series in the 
ratio of chord to tunnel height. More recently, accurate 
numerical solutions using panel methods (surface singularity 
distributions) are readily obtainable. An early example of this 
approach is given in Giesing [5]. 

In the situation where the airfoil disturbance and the chord-
to-tunnel height ratio are both small, analytical results can be 
obtained directly with the use of thin-airfoil theory and an 
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expansion technique due to Keldysh and Lavrentiev [6]. This 
approach was used in Plotkin and Kennell [7] to obtain the lift 
coefficient due to thickness and angle of attack for a thin 
airfoil in ground affect. In this Note, expressions for the lift 
coefficient of a flat plate and parabolic arc airfoil at the center 
of a wind tunnel will be derived which are linear in angle of 
attack and camber ratio and in the form of a series expansion 
in the chord-to-tunnel height ratio. 

Problem Formulation and Method of Solution 

The problem under consideration is the steady two-
dimensional incompressible potential flow of a uniform 
stream of speed U past a zero-thickness airfoil of chord 2c. 
The midchord of the airfoil is located at the center of a wind 
tunnel with height 2hc. All lengths are normalized by c and 
speeds by U. A cartesian coordinate system is introduced with 
origin at midchord, x aligned with the stream, and.y normal to 
it. 

The airfoil is described by the equation 

y=-ax + /3r,(x) (1) 

where /3 = 0(a). The velocity field is characterized by a 
velocity potential * which is normalized by Uc. A per
turbation velocity potential 0 is introduced such that 

*=*+</> (2) 

and the first-order, thin-airfoil mathematical problem for <j> 
(linear in a. and (3) is 

v 2 0 = 0 (3) 

0 y ±h 

= - a + /3j)'(x) y = ± 0 , - 1 < X < 1 

(4) 

(5) 

v 0 — 0 x — ±oo (6) 

If the disturbance to the stream is modeled by vortices of 
strength y(x) per unit length, normalized by U, and if the 
images of these singularities in the wind tunnel walls are 
added, the perturbation complex potential becomes 

f=(j) + ̂ =-L [ 7 ( J ) l 0 g t a n h [ i r ( 2 - e / 4 / ! ] ^ 
2TT J - i 

(7) 

where ^ is the stream function and z = x + iy. This satisfies 
equations (3), (4), and (6). Substitution into the body 
boundary condition (5) leads to the following integral 
equation for the vorticity: 

y(H)K(x-!:) d£ = 2ir(a-(lT,' (x)) (8) 

where the kernel function is 

K(x) = (T/4h)[coMwx/4h) - tanh(7rx/4/0] (9) 

Keldysh and Lavrentiev [6] suggest the following expansion 
scheme with h ~' as the expansion parameter: 

K(x) = x-[+h-lJ^Kn(x/h)" 
o 

Oo 

7U) = I>-"7„W (10) 
o 

Equation (10) is substituted into equation (8) and terms with 
like powers of h~x are collected. The following system of 
equations for the unknown yn (x) is obtained: 

7oi|) 
i x - £ 

dt. = 2ir(.a-Pri'(x)) 

7 „ (£ ) 
di j ' , E^*-*)'"^,,,-^)^ 

« > l - f„(x) ( l l ) 

The solution is not unique until the Kutta condition at the 
trailing edge is satisfied. The solution of equations (l l) is then 

l / l - * \ i ' 2 f / l + { \ " 2 / „ ( £ ) 
y„ (x) •• 

TT2 V l + X / J - I V 1 - f / £• 
rf£(l2) 

The singular integrals are to be considered in the Cauchy 
principal value sense. It is seen that only Km with odd sub
scripts are nonzero and the first two are 

Kt = -ir2/24 ^ 3 = 7 T T 4 / 5 7 6 0 (13) 

Results 

Consider first the case of a flat plate at angle of attack a. 
This is represented by y = - a x in equation (1). The first 
three terms in the vorticity expansion are found to be 

7o 

72 

74 

/ l-x \ W2 

>a 
V \+x / 

7T2a / 1-X \ 1 /2 / 3 \ 

TT 4a\ \~X \ 1 /2 / , 

m)TTx) \lx + 

(14) 

r4 

2880 

The lift coefficient is given by 

I 

C, = ' 

35x2 29* \ 
^r~ + ̂ r +12 

2 2 / 

L = J - i 7 ( X ) dX (15) 

and therefore for the flat plate 

CL=2ira)l + —— j + O ^ 6 ) (16) 
L (. 24h2 7680/;4 ) 

Note that Y0 gives the result for a flat plate in an infinite fluid 
with lift coefficient 27ra. Note also that h is the ratio of tunnel 
height to chord. The solution is identical to that in reference 
[2]for terms linear in a. 

Consider next the case of a cambered airfoil at zero angle of 
attack represented by y = (3rj(x) in equation (1). fi is a 
measure of the disturbance near to the foil. To carry out the 
expansion, it is necessary to choose a camber shape. The 
parabolic arc airfoil is selected and is given by 

y=m -x2) (17) 

The first three terms in the vorticity expansion are 

7o = 4/3(1 - x 2 ) * 

72 = (TT^/nXl-X2)'' (18) 

- 7 T 4 / 3 

'" 2880 V 1+x , 
The lift coefficient is 

C^241+48*2-
Discussion 

/ V'-* 

T4 

46080/;4 

/ l - x \ l /2 / 15x 15\ 

(777) (7*3 + 7*2 +T~ + T) 

-00 "6)j (19) 

Wall-interference corrections to the first-order, thin-airfoil 
lift have been obtained directly for incompressible flow using 
a regular perturbation expansion in h ~', the chord-to-tunnel 
height ratio. It is important to realize that this problem 
contains two small expansion parameters and that therefore 
the utility of the result is related to their relative magnitude. 
To illustrate this point, consider the expansion in /!~' of the 
exact solution of Tomotika [2] for the flat plate. It is 
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f T2 

C, =2irsina 1 H T ( l + s i n 2 a 
1 (- 24h2 

- I T * 

7680/;' 
( l l - 5 3 s i n 2 a - 2 2 s i n 4 a ) + 0(/;-6)] (20) 

as given in Garner et al. [1]. If a = 0(h~l), for example, it 
would be incorrect to keep the 0(h~4) term in equation (16) 
since we have neglected the 0(a2/h2) term from equation (20) 
by considering only terms linear in a. 
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Analysis of the Weibull Distribution 
Function 

K.T.Chang1 

Weibull originally introduced his distribution function 
based on a chain links model and, as such, found wide ap
plication in ceramics engineering analysis. A general criticism 
of his formulation had been that the function lacked 
theoretical justification - that the selection of the functional 
form was based on intuitive empirical reasoning. This paper 
proposes a proof of the correctness of the Weibull function, 
and in so doing, also explicitly defines the expected behavior 
of a population that fits the distribution. 

We consider two sets of sample bars of the same ceramic 
material, manufactured by the same process. They are 
geometrically similar, but have two distinctively different 
sizes. It is assumed that the two sample sets contain a similar 
distribution of flaws, so that each elemental volume of the 
material, taken from either sample set, may be assigned the 
same probabilities of failure as a function of the local tensile 
stress. A failure of the weakest volume, of course, constitutes 
a total failure of the sample. 

Now the two sets of samples are tested in simple tension, in 
nearly as possible identical conditions. Cumulative failure 
distributions are obtained as a function of the nominal ap
plied stress for each set. We expect the following results: 

(/) The stress levels at which samples begin to fail would be 
different according to size, the large samples failing at lower 
stress levels than the small samples. 

(//') Although the stress levels are different, the shape of the 
failure distribution curves should be similar in appearance. 

At this point, we need to more precisely define what is 

(ft <?2 I n (^ 

Fig. 1 Properties of nonlinear distribution function on Weilbull paper 

meant by "similar distributions." For the large samples, we 
select two failure percentiles N\, N2 (for example, 80 percent 
and 20 percent), and the corresponding stresses are a^Ni) and 
oi(N2), the ratio is 

- — — - = / - , (N,,/V2) 
a,(N2) 

Similarly, we determine the stress ratio for the small samples 

^7^f=^(Nl,iV2) 
°s(N2) 

The condition for the two distributions to be similar is then 

r/(/V1,/V2) = rs(yV1,N2) (1) 

for any and all choices of the percentiles Nt and /V2. 
On Weibull paper, we arbitrarily draw a curve to represent 

the faliure distribution of the large samples. Then, using 
simple probability theory, the failure distribution for the 
small samples can easily be plotted. It then becomes apparent 
that, except for Weibull straight lines, the condition for 
similarity is violated; we therefore will have established that 
the Weibull function applies to populations satisfying con
dition (if) mentioned in the foregoing. 

We assume a distribution function in the general form 

/ n ( o - ) = l - e - * ) ( = l - P ) (2) 

where F(d) is the probability of failure of an elemental 
volume of the test material. Let each large sample contain " / " 
unit volumes, then 

F,(a)=l-e -Mo) (3) 

P j =e-J<H<>2') 

P2 =e~'*( | 72> 
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In Fig. 1 we sketch a curve (in this case, concave downward), 
which corresponds to some selection of <j>(o) yet to be 
determined. Let each small sample contain " / ' unit volumes, 
then 

Fs(a)=\-e~J^) (4) 

At stress equal to a2 the probability of survival of the small 
samples are 

For large samples, 

therefore 

P2=Pi"J (5) 

Since i/j is constant, the vertical separation of Vt and Vj is 
constant ( = lni/j), therefore Vj is obtained by moving K, 
down a fixed distant parallel to the vertical axis. Now the 
horizontal separation ( = lna2/ax) becomes variable, except 
when the curves are inclined parallel straight lines. Therefore 
we have shown that any nonlinear distribution on Weibull 
paper violates the similarity condition. 

Another way to look at the Weibull distribution is to 
postulate a test on samples of uniform size. After testing all 
samples to failure, the results may be plotted on Weibull 
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C, =2irsina 1 H T ( l + s i n 2 a 
1 (- 24h2 

- I T * 

7680/;' 
( l l - 5 3 s i n 2 a - 2 2 s i n 4 a ) + 0(/;-6)] (20) 

as given in Garner et al. [1]. If a = 0(h~l), for example, it 
would be incorrect to keep the 0(h~4) term in equation (16) 
since we have neglected the 0(a2/h2) term from equation (20) 
by considering only terms linear in a. 
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Analysis of the Weibull Distribution 
Function 

K.T.Chang1 

Weibull originally introduced his distribution function 
based on a chain links model and, as such, found wide ap
plication in ceramics engineering analysis. A general criticism 
of his formulation had been that the function lacked 
theoretical justification - that the selection of the functional 
form was based on intuitive empirical reasoning. This paper 
proposes a proof of the correctness of the Weibull function, 
and in so doing, also explicitly defines the expected behavior 
of a population that fits the distribution. 

We consider two sets of sample bars of the same ceramic 
material, manufactured by the same process. They are 
geometrically similar, but have two distinctively different 
sizes. It is assumed that the two sample sets contain a similar 
distribution of flaws, so that each elemental volume of the 
material, taken from either sample set, may be assigned the 
same probabilities of failure as a function of the local tensile 
stress. A failure of the weakest volume, of course, constitutes 
a total failure of the sample. 

Now the two sets of samples are tested in simple tension, in 
nearly as possible identical conditions. Cumulative failure 
distributions are obtained as a function of the nominal ap
plied stress for each set. We expect the following results: 

(/) The stress levels at which samples begin to fail would be 
different according to size, the large samples failing at lower 
stress levels than the small samples. 

(//') Although the stress levels are different, the shape of the 
failure distribution curves should be similar in appearance. 

At this point, we need to more precisely define what is 
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meant by "similar distributions." For the large samples, we 
select two failure percentiles N\, N2 (for example, 80 percent 
and 20 percent), and the corresponding stresses are a^Ni) and 
oi(N2), the ratio is 

- — — - = / - , (N,,/V2) 
a,(N2) 

Similarly, we determine the stress ratio for the small samples 

^7^f=^(Nl,iV2) 
°s(N2) 

The condition for the two distributions to be similar is then 

r/(/V1,/V2) = rs(yV1,N2) (1) 

for any and all choices of the percentiles Nt and /V2. 
On Weibull paper, we arbitrarily draw a curve to represent 

the faliure distribution of the large samples. Then, using 
simple probability theory, the failure distribution for the 
small samples can easily be plotted. It then becomes apparent 
that, except for Weibull straight lines, the condition for 
similarity is violated; we therefore will have established that 
the Weibull function applies to populations satisfying con
dition (if) mentioned in the foregoing. 

We assume a distribution function in the general form 

/ n ( o - ) = l - e - * ) ( = l - P ) (2) 

where F(d) is the probability of failure of an elemental 
volume of the test material. Let each large sample contain " / " 
unit volumes, then 

F,(a)=l-e -Mo) (3) 

P j =e-J<H<>2') 

P2 =e~'*( | 72> 
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In Fig. 1 we sketch a curve (in this case, concave downward), 
which corresponds to some selection of <j>(o) yet to be 
determined. Let each small sample contain " / ' unit volumes, 
then 

Fs(a)=\-e~J^) (4) 

At stress equal to a2 the probability of survival of the small 
samples are 

For large samples, 

therefore 

P2=Pi"J (5) 

Since i/j is constant, the vertical separation of Vt and Vj is 
constant ( = lni/j), therefore Vj is obtained by moving K, 
down a fixed distant parallel to the vertical axis. Now the 
horizontal separation ( = lna2/ax) becomes variable, except 
when the curves are inclined parallel straight lines. Therefore 
we have shown that any nonlinear distribution on Weibull 
paper violates the similarity condition. 

Another way to look at the Weibull distribution is to 
postulate a test on samples of uniform size. After testing all 
samples to failure, the results may be plotted on Weibull 
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paper as a single straight line. However, it is also possible to 
observe that, at, say the 20 percentile point, the remaining 80 
percent of the samples in fact have a smaller percentage of 
defective volumes in them than in the original set of samples. 
Disregarding the "high strength" portion of each remaining 
sample, in effect we have a new set of samples with smaller 
volume of previous failure probabilities. The next failure then 
can be either a continuation of the first cumulative failure 
curve, or the first failure in a new population with smaller 
sizes. Thus, a single straight line, or a family of parallel 
straight lines, can equally well represent the same test results, 
according to interpretation. The similarity assumption 
proposed earlier is seen to be no more than a requirement of 
self-consistency in the behavior of the samples. 

It is also possible to derive the Weibull distribution in a 
formal mathematical sense2. From equations (3) and (4), at a 
selected percentile/v*,, one can write 

te(N,)) = 
lnNt 

J 
Similar expressions can be written for N2. Now imposing the 
similarity condition (1), also denoting by ̂  the inverse func
tion of </>: 

* ( - ^ ) 

,(-!£) 
* ( -

* ( -

InNi 

J 

lnN2 

J 
Thus, in general, ip{otA)/\p(aB) is independent of a. 
Specifically, 

fta/1) MA) 
— = — = constant 

i(ctB) UB) 

Differentiating the first quotient with respect to a, 

MaB)\l,'(aA)A-iKaA)\l,'(aB)B = 0 

Separating variables, 

\j,'(aA)A _ \li'(aB)B 
^{aA) V(afl) 

Again, this expression holds true for all values of a, so that 
\l/'(aA)/\p(aA) can be written, without loss of generality, to 
\p'(A)/)p{A); where \p'=d\j/(aA)/d{aA) now becomes 
\//' =d^{A)/dA. This gives 

VIA) 
MA) 

constant 

Integrating, 

or, 

so that, 

ln\f/(A) = kilnA + /nk2 

MA) = k2A
ki 

«+)=(£)' 
which is the Weibull distribution. 

Referring again to Fig. 1, for equal probability of survival 
Pt on the two curves V, and Vj, 

p =£-'*(<>i) =£-./'0('>2> 

or 

This approach was suggested by a reviewer of the ASME JOURNAL OF 
APPLIED MECHANICS. 

-T- = constant (6) 

Equation (6) can be satisfied by a nonunique choice of the 
form of the function 0, the distinguishing property of 
WeibulPs choice, 

4>(x) 

F(x) 

/x-x„\' 

\ x0 ) 

( - ) ' 

is that 

x2 - xu 

(7) 

(8) 

or the modified stress ratio is constant along V, versus Vj, 
independent of the value of the percentile F(X) in equation 
(7). 

If two sets of samples are identical except in size (size is here 
generalized to be a basic building block of the phenomenon 
under observation, it is a parameter whose enumeration 
differentiates the sets of samples), and the only size effect is a 
constant shift of the x-variable, we may feel justified to say 
that these two sets of samples are self-consistent, or they 
belong to the same population that exhibits a self-consistent 
characteristic. 

As pointed out by Weibull, any distribution may be 
represented by a sum of simple (linear) distributions. If we 
encounter data that are curved on Weibull paper, it can far 
more easily be explained on the basis of the samples not 
belonging to a single self-consistent population, than to ar
bitrarily impose a complex curve formulation and attempt to 
discover a logical new distribution function. WeibulPs 
analysis of the statures for adult males born in the British 
Isles, for example, showed that the distribution could be 
represented by two self-consistent populations. An interested 
historian might research the immigration of people to the 
British Isles prior to 1917, and identify two major 
populations. By not using linear distributions, the op
portunity for understanding the phenomenon may be forever 
lost. 
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paper as a single straight line. However, it is also possible to 
observe that, at, say the 20 percentile point, the remaining 80 
percent of the samples in fact have a smaller percentage of 
defective volumes in them than in the original set of samples. 
Disregarding the "high strength" portion of each remaining 
sample, in effect we have a new set of samples with smaller 
volume of previous failure probabilities. The next failure then 
can be either a continuation of the first cumulative failure 
curve, or the first failure in a new population with smaller 
sizes. Thus, a single straight line, or a family of parallel 
straight lines, can equally well represent the same test results, 
according to interpretation. The similarity assumption 
proposed earlier is seen to be no more than a requirement of 
self-consistency in the behavior of the samples. 

It is also possible to derive the Weibull distribution in a 
formal mathematical sense2. From equations (3) and (4), at a 
selected percentile/v*,, one can write 

te(N,)) = 
lnNt 

J 
Similar expressions can be written for N2. Now imposing the 
similarity condition (1), also denoting by ̂  the inverse func
tion of </>: 

* ( - ^ ) 

,(-!£) 
* ( -

* ( -

InNi 

J 

lnN2 

J 
Thus, in general, ip{otA)/\p(aB) is independent of a. 
Specifically, 

fta/1) MA) 
— = — = constant 

i(ctB) UB) 

Differentiating the first quotient with respect to a, 

MaB)\l,'(aA)A-iKaA)\l,'(aB)B = 0 

Separating variables, 

\j,'(aA)A _ \li'(aB)B 
^{aA) V(afl) 

Again, this expression holds true for all values of a, so that 
\l/'(aA)/\p(aA) can be written, without loss of generality, to 
\p'(A)/)p{A); where \p'=d\j/(aA)/d{aA) now becomes 
\//' =d^{A)/dA. This gives 

VIA) 
MA) 

constant 

Integrating, 

or, 

so that, 

ln\f/(A) = kilnA + /nk2 

MA) = k2A
ki 

«+)=(£)' 
which is the Weibull distribution. 

Referring again to Fig. 1, for equal probability of survival 
Pt on the two curves V, and Vj, 

p =£-'*(<>i) =£-./'0('>2> 

or 

This approach was suggested by a reviewer of the ASME JOURNAL OF 
APPLIED MECHANICS. 

-T- = constant (6) 

Equation (6) can be satisfied by a nonunique choice of the 
form of the function 0, the distinguishing property of 
WeibulPs choice, 

4>(x) 

F(x) 

/x-x„\' 

\ x0 ) 

( - ) ' 

is that 

x2 - xu 

(7) 

(8) 

or the modified stress ratio is constant along V, versus Vj, 
independent of the value of the percentile F(X) in equation 
(7). 

If two sets of samples are identical except in size (size is here 
generalized to be a basic building block of the phenomenon 
under observation, it is a parameter whose enumeration 
differentiates the sets of samples), and the only size effect is a 
constant shift of the x-variable, we may feel justified to say 
that these two sets of samples are self-consistent, or they 
belong to the same population that exhibits a self-consistent 
characteristic. 

As pointed out by Weibull, any distribution may be 
represented by a sum of simple (linear) distributions. If we 
encounter data that are curved on Weibull paper, it can far 
more easily be explained on the basis of the samples not 
belonging to a single self-consistent population, than to ar
bitrarily impose a complex curve formulation and attempt to 
discover a logical new distribution function. WeibulPs 
analysis of the statures for adult males born in the British 
Isles, for example, showed that the distribution could be 
represented by two self-consistent populations. An interested 
historian might research the immigration of people to the 
British Isles prior to 1917, and identify two major 
populations. By not using linear distributions, the op
portunity for understanding the phenomenon may be forever 
lost. 
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/ = 
g = 
J = 

J' = 
L = 
r0 = 

r2 = 
S = 
u = 

W = 
a. = 
e = 
5 = 
P = 
a = 

°i = 
Or = 

°z = 
oe = 

. V = 
4> = 
* = 

^ = 

function of 0 and i/<„, 
gravitational acceleration 
nondimensional plane flow rate 
corrected nondimensional flow rate 
hopper length 
radius at the aperture 
radius at the upper stress-free surface 
aperture width 
radial velocity 
mass flow rate 
momentum coefficient 
end-wall friction angle 
side-wall friction angle 
bulk density of the granular material 
mean stress 
major principal stress 
radial normal stress 
lateral normal stress 
circumferential normal stress 
shear stresses 
angle of friction of the granular material 
angle between <r, and the r-axis 
\p at the inclined side walls 

Introduction 

The flow of granular materials in wedge-shaped hoppers 
(Fig. 1) is usually modeled as a two-dimensional flow between 
two infinitely long inclined planes (a review of previous work 
may be found in reference [1]). Analyses developed by the 
authors [1], which neglected the friction on the vertical end 
walls, tended to overestimate the experimental hopper flow 
rates. From physical considerations it would seem almost 
certain that including end-wall friction in these analyses 
would bring them in closer agreement with the experimental 
measurements. (One is not absolutely certain because as is 
noted in references [1], there exists both theoretical and ex
perimental evidence that under certain conditions, increases in 
wall friction can actually increase the flow rate.) The present 
Note extends one of the theoretical analyses of reference [1] to 
examine the effects of such end-wall friction on predicted 
flow rates. 

Governing Equations 

Reference [1] presented two approximate solutions for 
stress and velocity fields in wedge-shaped hoppers, both of 
which were based on the method of integral relations. One, 
called Analysis I, made use of the linear momentum equations 
in both the r and 6 directions. Based on the information 
learned from this analysis, Savage and Sayed [1] devised a 
second and much simpler approach called Analysis II, which 
made use of only one linear momentum equation, the radial 
momentum equation averaged over the width of the hopper. 
The two approaches, Analysis I and II, were found to yield 
results that were very close to each other; evidently the simple 
Analysis II was so constructed as to include the essential 
features present in the more complete theory. 

For simplicity in the present paper, we shall develop an 
extension of the more straightforward Analysis II of reference 
[1]. 

Following the analysis presented in reference [1], the 
granular material is treated as a continuum obeying the Mohr-
Coulomb yield criterion which is satisfied by expressing the 
stresses in terms of a and 4> as follows, 

ar = a (\ + s'm cj> cos 2\p) 
<xe = a (1 — sin 0cos \ip) 

Tre — T8r = o s m <t> sin 2\j/ 

Fig. 1 Definition sketch of flow in wedge-shaped hopper 

The flow is assumed radial with constant bulk density. An 
investigation of the compressibility of the flow near the 
aperture may be found in reference [1]. With the foregoing 
assumptions, the equations of continuity and balance of 
linear momentum in the /•-directions become, 

dr 
(pru) = 0 

3<x __ 1 diji o>-
dr r 86 r 

a a dr,,. 
— + -r1 + pg COS 6 = 

dz 
- pU 

du 

~d7 

(2) 

(3) 

The term drzr/dz in equation (3) accounts for the deviation 
from the two-dimensional stress field caused by the vertical 
end walls. Note that in the foregoing we have assumed the 
stress field to be three-dimensional but the deformation or 
flow field to be two-dimensional. The vertical side walls are 
thus considered to be sufficiently rough to generate finite 
shear stresses rzr but not rough enough to cause the material 
to shear on surfaces other than those perpendicular to the r-d 
plane. The granular material slips on the vertical end walls 
even though shear stresses exist there. Such two-dimensional 
flow fields are commonly observed in hopper-flow vis
ualization experiments in which the hopper is initially loaded 
with layers of different colored granular material and then 
discharged. 

Analysis 

The present analysis is based on an approximate two-
dimensional theory termed Analysis II in reference [1]. Only a 
brief outline of this Analysis (which takes rzr = 0) is given 
here. The normal stress ae is assumed to have an average value 
ae depending only on the radial coordinate r. Substituting 
equations (1) and (2) in equation (3) and integrating from 6 = 
0 to 6 = 6„, the /--momentum equation (3) is transformed into 
an ordinary differential equation. The resulting solution of 
the stress distribution is 

Pgr0 

where 

/ 

"£) ' • [ 
sin 0,, 

6»w-2/ ,0 lv+tan5 ](~) 

grh 
(4) 

(2\pw - ir)cos <j> 

L 1 + / + (tan S)/6W J V r ) 

r r q + s i n . / . W , , - ] , 1 

v. L cos (j) J J 

and 

r, = [ ! + / + (tan 5)/dw]/f (6) 

(1) 
The constants K and X are determined from the boundary 
conditions at the upper and lower stress-free surfaces. 
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oe(r2)=ag(r0) = 0 

The assumption of the lower stress-free surface to be at r = 
r0 = constant, and the effect of this approximation on the 
flow rates is discussed in [1]. It was found there that flow rate 
solutions based on this approximate boundary condition were 
close to those in which the shape of the stress-free surface at 
the exit was explicitly determined. The nondimensional 
aperture velocity is 

"o _ f l+/+(tanfi)/fl, - • " 

2.5 

(8) 
La[(2-4/)0 l v+2tanSJ 

where b is the effective aperture width (S — kd), and k is of 
order one. 

The preceding expression for M0 /\[gb is different from the 
nondimensional flow rate J, which should be defined as 

7= 
W 

" ( -
V 

pLgi'W1 \sinew J jg~b ( 9 ) 

(Note that in [1] the expressions for the nondimensional flow 
rates given by equations (33) and (41) are in error; these ex
pressions are in fact u0/\fgb and not / . ) 

Now the effects of the vertical end walls will be accounted 
for by including the term drzr/dz in equation (3) in the 
analysis. Considering the material to reach yield in all three 
dimensions and assuming that the shear stresses developed on 
the vertical end walls are small, the lateral (z-direction) 
normal stress may be taken approximately equal to the major 
principal stress, 

(jz=cr, = a(l+sin 0) (10) 

This assumption is reminiscent of the Haar-von Karman 
hypothesis for axisymmetric flow. It is reasonable for small 
end-wall friction coefficient e, i.e., for small e/<t>. Thus in
tegrating drzr/dz across the hopper gives 

- ^ 0 = ^ ( 1 + y ) ( l + s i n 0 ) tan e (11) 

where we have taken drzr/dd — ozw (tan e)/(L/2) and used 
approximations similar to those in [1]. Integrating equation 
(3) from 6 = 0 to 9 = 8W, and using equation (11) yields, 

fr 
dae 

dr fr-1 
tan 5 

+ M 
(~) °o 

sin 8W a\2 

where 

M= (1 +/)(! + sin 0) tan e 

(12) 

(13) 

Equation (12) was integrated numerically using a predictor 
corrector method. Starting with the initial conditions at the 
upper stress-free surface and assuming a value for the 
parameter X, integration continued to the radius at which ae 

= a = 0, corresponding to the aperture. 
The assumption (10) is true for small values of e/<j> and thus 

for small values of the shear stress rzr. Consequently, the term 
M (r/r0) ae is small compared to the other terms in equation 
(12). This makes it possible to obtain a closed-form ap
proximate solution by using the two-dimensional value of ae 

[equation (4)] to estimate the term M (r/ra) 6e. The resulting 
expression for the stress distribution is 

Pgr0 

J — ^ l f l - -
lew~2fd^+ tan 6 JL 

M(r/r0) 
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Equation (15) 

Numerical solution 
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Fig. 2 Nondimensional flow rates, approximate solution [equation 
(15)], numerical solution for <j> = 38deg, & = 22 deg, ande = 14deg 
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Applying the boundary conditions (7), the nondimensional 
flow rate for large heads (r2 > > r0) becomes 

J'=J 
(1 +tan 5 / 0 J ( 3 / - 1 - t a n 8/6„-M) 

tan 8 \ / tan 8 , \ 
1 - -^— ) ( l + — + M ) / tan 8 \ ( 

(15) 

Results and Discussion 

This analysis is intended only for small values of the end-
wall shear stresses rzr, i.e., for small values of the parameter 
M corresponding to small side-wall friction coefficients e and 
length-to-aperture width ratio (L/b). Figure 2 shows typical 
predicted nondimensional flow rates J' for $ = 38 deg, 8 = 
22 deg, and e = 14 deg, and the experimental results of 
Sullivan [2], Brown and Richards [3], and Savage [4]. The 
closed-form and numerical solutions were almost identical 
except for L/b = 2, where only numerical solutions could be 
obtained. Reductions of J' due to end-wall friction are 
moderate and the magnitude of the reductions decrease 
rapidly for increasing L/b. The values of J' for 4> = 23 deg, 8 
= 14 deg, and e = 9 deg could be obtained only numerically 
and are shown in Fig. 3, compared to the experimental results 
of the authors [1] and Sullivan [2]. The reductions of J' in this 
case are larger than those of 0 = 38 deg. 

The experimental values in reference [1] for <j> = 23 deg 
were obtained by averaging the measured flow rates 
corresponding to different values of L/b ranging from 
6.8-16. As might be expected for this limited range of L/b, 
only slight differences of the flow rates occurred and no clear 
dependence on L/b could be observed. The experimental flow 
rates of Brown and Richards [3] for sand (0 = 38 deg) were 
higher for large slots (and small L/b) than for small slots (and 
large L/b). Apparently those flow rates were influenced by 
factors other than the vertical end-wall friction. One likely 
reason for the reduction of flow rates from small slots could 
be the intermittent arching phenomenon which is related to 
the particle diameter-to-slot width ratio. The values of L/b 
for the experiments of references [2] and [4] were not 
available. 

The preceding results indicate that the inclusion of end-wall 
friction in the analysis brings the theoretical values of non-
dimensional flow rate closer to the experimental values. 
Further reductions due to compressibility and nonuniform 
velocity distribution near the aperture (see reference [1]), 
would result in a good agreement. 
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A Note on a No-Slip Interface Crack 

L. M. Keer1 and K. P. Meade2 

Introduction 
In [1] the adhesive fracture of an interdigitated or very 

rough surface was investigated by considering an interface 
crack with no-slip zones. Solutions of this type are motivated 
by problems in internal artificial human joints. The material 
(PMMA) forming the bond between the articulating surface 
and the bone does not adhere to the bone, but rather forms a 
mechanical interlock. It was found that for practical values of 
parameters representing a PMMA/ cancellous bone interface, 
the no-slip zones will generally extend throughout the entire 
crack region. 

Results from experiments performed to study the char
acteristics of the PMMA/bone interface were reported in [2]. 
During the experiments the crack was observed to inititate 
from the tip of the notch in the test specimen at about 60 
percent of the maximum applied load. This means that after 
the crack had started propagating, the structure increased its 
load-carrying capacity. Since adhesion between PMMA and 
cancellous bone is small and thus would be lost under minimal 
applied loads, it was suggested that the mechanical in
terlocking of the PMMA and the trabecular structure could be 
responsible for the increased load resistance as the crack 
opened. 

In this Note, an interface crack with no tangential slip is 
considered where the strengthening mechanism due to the 
mechanical interlocking between the crack surfaces is 
simulated by relating the load on the crack surfaces to the 
crack opening displacement in a nonlinear manner. A 
nonlinear integral equation results and is solved using the 
method of successive approximations. The solution shows the 
effects of mechanical interlocking on the crack opening 
displacement and stress-intensity factor. 

Formulation 

Two linearly elastic, homogeneous, isotropic half planes 
are perfectly bonded along the interface, y = 0, except for the 
region \x I < a where adhesion is lost. In this region the 
materials are mechanically interlocked so that no relative 
tangential slip between the crack surfaces can occur. The 
geometry and coordinate system are as depicted in Fig. 1 of 
[1]. 

The boundary conditions on.}' = 0 are: 

(1) 

(2) 

(3) 

V(x) = uy(x,0)-u2
y(x,0) (4) 

and the function P(»), representing the load applied to the 
crack surfaces, is as yet unspecified. The superscripts are used 
to distinguish the two materials. 

Following Mak et al. [1], the boundary value problem may 
be reduced to the solution of the following integral equation: 

4v 

°iv = 
where 

= 02y 

o5y = 0 

a\y = 

u\ 
ayy 

Oyy, 

= u2 

= Oyy 

«i 
a 

= u\, 0 
< \x\ < 

-P(V(x)) 

< 1*1 
0 0 

1*1 

< 00 

< a 

where 

V(x) = - a - ' \P( V(x0))K(x0 ,x) dx0, (5) 

K{x0,x) = — log{ [(1 - ( * 0 / « ) 2 ) / ! + (1 -{x/aY)Vi} 
•K 

/ \(x0/a)2 - (x/a)1 IVl} (6) 
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Applying the boundary conditions (7), the nondimensional 
flow rate for large heads (r2 > > r0) becomes 

J'=J 
(1 +tan 5 / 0 J ( 3 / - 1 - t a n 8/6„-M) 

tan 8 \ / tan 8 , \ 
1 - -^— ) ( l + — + M ) / tan 8 \ ( 

(15) 

Results and Discussion 

This analysis is intended only for small values of the end-
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M corresponding to small side-wall friction coefficients e and 
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except for L/b = 2, where only numerical solutions could be 
obtained. Reductions of J' due to end-wall friction are 
moderate and the magnitude of the reductions decrease 
rapidly for increasing L/b. The values of J' for 4> = 23 deg, 8 
= 14 deg, and e = 9 deg could be obtained only numerically 
and are shown in Fig. 3, compared to the experimental results 
of the authors [1] and Sullivan [2]. The reductions of J' in this 
case are larger than those of 0 = 38 deg. 

The experimental values in reference [1] for <j> = 23 deg 
were obtained by averaging the measured flow rates 
corresponding to different values of L/b ranging from 
6.8-16. As might be expected for this limited range of L/b, 
only slight differences of the flow rates occurred and no clear 
dependence on L/b could be observed. The experimental flow 
rates of Brown and Richards [3] for sand (0 = 38 deg) were 
higher for large slots (and small L/b) than for small slots (and 
large L/b). Apparently those flow rates were influenced by 
factors other than the vertical end-wall friction. One likely 
reason for the reduction of flow rates from small slots could 
be the intermittent arching phenomenon which is related to 
the particle diameter-to-slot width ratio. The values of L/b 
for the experiments of references [2] and [4] were not 
available. 

The preceding results indicate that the inclusion of end-wall 
friction in the analysis brings the theoretical values of non-
dimensional flow rate closer to the experimental values. 
Further reductions due to compressibility and nonuniform 
velocity distribution near the aperture (see reference [1]), 
would result in a good agreement. 
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rough surface was investigated by considering an interface 
crack with no-slip zones. Solutions of this type are motivated 
by problems in internal artificial human joints. The material 
(PMMA) forming the bond between the articulating surface 
and the bone does not adhere to the bone, but rather forms a 
mechanical interlock. It was found that for practical values of 
parameters representing a PMMA/ cancellous bone interface, 
the no-slip zones will generally extend throughout the entire 
crack region. 

Results from experiments performed to study the char
acteristics of the PMMA/bone interface were reported in [2]. 
During the experiments the crack was observed to inititate 
from the tip of the notch in the test specimen at about 60 
percent of the maximum applied load. This means that after 
the crack had started propagating, the structure increased its 
load-carrying capacity. Since adhesion between PMMA and 
cancellous bone is small and thus would be lost under minimal 
applied loads, it was suggested that the mechanical in
terlocking of the PMMA and the trabecular structure could be 
responsible for the increased load resistance as the crack 
opened. 

In this Note, an interface crack with no tangential slip is 
considered where the strengthening mechanism due to the 
mechanical interlocking between the crack surfaces is 
simulated by relating the load on the crack surfaces to the 
crack opening displacement in a nonlinear manner. A 
nonlinear integral equation results and is solved using the 
method of successive approximations. The solution shows the 
effects of mechanical interlocking on the crack opening 
displacement and stress-intensity factor. 

Formulation 

Two linearly elastic, homogeneous, isotropic half planes 
are perfectly bonded along the interface, y = 0, except for the 
region \x I < a where adhesion is lost. In this region the 
materials are mechanically interlocked so that no relative 
tangential slip between the crack surfaces can occur. The 
geometry and coordinate system are as depicted in Fig. 1 of 
[1]. 

The boundary conditions on.}' = 0 are: 
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V(x) = uy(x,0)-u2
y(x,0) (4) 

and the function P(»), representing the load applied to the 
crack surfaces, is as yet unspecified. The superscripts are used 
to distinguish the two materials. 

Following Mak et al. [1], the boundary value problem may 
be reduced to the solution of the following integral equation: 

4v 

°iv = 
where 

= 02y 

o5y = 0 

a\y = 

u\ 
ayy 

Oyy, 

= u2 

= Oyy 

«i 
a 

= u\, 0 
< \x\ < 

-P(V(x)) 

< 1*1 
0 0 

1*1 

< 00 

< a 

where 

V(x) = - a - ' \P( V(x0))K(x0 ,x) dx0, (5) 

K{x0,x) = — log{ [(1 - ( * 0 / « ) 2 ) / ! + (1 -{x/aY)Vi} 
•K 

/ \(x0/a)2 - (x/a)1 IVl} (6) 

Professor, Department of Civil Engineering, Northwestern University, 
Evanston, 111. 60201. Mem. ASME. 

Graduate Student, Department of Civil Engineering, Northwestern 
University, Evanston, 111. 60201. Student Mem. ASME. 

Manuscript received by ASME Applied Mechanics Division, September, 
1981; final revision, December 1981. 

454/Vol. 49, JUNE 1982 Transactions of the ASME 
Copyright © 1982 by ASME

Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BRIEF NOTES 

and the symbol " log" indicates the natural logarithm. The 
constant a has the same definition as in [ 1 ]. 

In addition to preventing relative tangential slip, the 
mechanical interlocking between the crack surfaces may offer 
resistance to opening the crack [2]. Assuming this is the case, 
P(') is taken as 

P(V(x0) )--

-P0+kV(x0)-y(V(Xo)yo<V(x0)<v 

(7) 

P0 V(x0)>v 

where -P0 is a constant applied pressure tending to open the 
crack. The quantity v represent the magnitude of the crack-
opening displacement at which the mechanical interlocks 
would "fail" in the sense of no longer offering resistance to 
opening the crack. Also, v would necessarily be less than or 
equal to 25 where <5 is the average physical interdigitation 
height [1]. The constants k and 7 characterize the material 
response of the mechanical interlocks in tension. 

The form of equation (7) indicates that when the 
mechanical interlocking between the crack surfaces offers 
resistance to opening the crack, it behaves as a "nonlinear 
spring." Thus as the crack opening displacement increases 
there is an increased load resistance followed by a "soft
ening" phase and then ultimately the interlocking "fails." 

The constants k and 7 are estimated in the following 
manner. Since the interlocking is assumed to resist the crack 
opening, the maximum value of this resistance, aR, is set 
equal to some fraction of the tensile strength of the interface, 
i.e., aR =eaT where 0 < e < l and aT is the tensile strength of 
the interface. For a PMMA/ cancellous bone interface the 
tensile strength is given as 1.8 MPa [2]. This assumption, 
together with equation (7) and the assumption that the in
terlocking "fails" in the sense described in the foregoing gives 

3V3ff^ 3v1e<77- 3V3ff^ 3V3e<77-
7 ^ k = 

2v 2v 2v3 2y3 

Numerical Solution 

Substituting equation (7) into equation (5) and introducing 
the dimensionless quantities £ = x/a, £0 = xQ/a, W{%) = 
V(a£)/25, P = P0a/25a, k = ka/a, 7 = 45V/cx, and v = 
v/2b gives 

w^)=p(\-eyA-\[N\w{U)\m^)d^ (8> 
where 

N\W(i0)\ = \ 

~kW{^)-y[W(Z0)f 0<W(H0)<v 

(9) 

J) WU0)>v 
Equation (8) is a nonlinear integral equation whose solution 

is determined using the method of successive approximations. 
The equation is written in the form 

w„{&=p{\-ef 
• ^ 

W , - i « o ) ] * « o . 8 dfo (10) 

The first approximation, fV0(^Q), is taken to be zero which 
gives 

W^) = P{\-i2)Vl (11) 

i.e., the solution for the case where the mechanical in
terlocking offers no resistance to opening the crack. This 
agrees with equation (13) of [1]. Subsequent approximations 
are obtained numerically until a convergence criterion is 
satisfied. 

1.Q00 

.800 

W/F 

° ' ° ° ° -200 .400 C .600 .800 1.000 

Fig. 1 Normalized crack opening displacement, P = 0.050. Upper 
curve is solution from [1]; lower curve is present analysis. 

0.000 .200 .400 £ .(,00 .800 1.000 

Fig. 2 Normalized crack opening displacement, P = 0.075. Upper 
curve is solution from [1]; lower curve is present analysis. 

w/p 

.400 

"•""" -MO .400 5 .600 .800 1.000 

Fig. 3 Normalized crack opening displacement, P = 0.100. Upper 
curve is solution from [1]; lower curve is present analysis. 

Table 1 Normalized stress-intensity factors 

P 
K, 

0.050 
0.87 

0.075 
0.93 

0.100 
0.92 

0.200 
0.96 

0.300 
0.98 

0.400 0.500 
0.98 0.98 

Results and Discussion 

Numerical results for the crack-opening displacement and 
stress-intensity factor are presented for k = 0.2436, y = 
0.9744, e = 0.5, v/a = 0.10, i; = 0.5, andO < P < 0.500. 

For P = 0.050 and 0.075, the effect of the mechanical 
interlocking on the crack-opening displacement is seen 
throughout the entire crack region (see Figs. 1 and 2). As the 
load is increased, the effect of the interlocking becomes 
concentrated near the crack tip (see Fig. 3). In all cases the 
crack-opening displacement is diminished due to the presence 
of the interlocking. 

Table 1 shows that for P = 0.050 the stress-intensity factor 
is 13 percent less than it would have been in the absence of the 
interlocking. This effect is seen to decay with an increase in 
the load to the point where there is only a 2 percent reduction 
in if,for P = 0.500. 

Both results, the reduction of the crack-opening dis
placement and the stress-intensity factor, are consistent with 
the strengthening mechanism proposed by Mak [2]. 
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BRIEF NOTES 

Pure Bending of Elliptic Ring Sector 

H. A. Lang1 

Introduction 

The problem solved in this Brief Note is shown in Fig. 1. A 
ring sector is subjected to pure bending couples, M. The cross 
section is an ellipse defined by the equation b2x2 + a2y2 = 
a2b2 where a and b are the axes of the ellipse. The toroidal 
radius \sR. 

The method of analysis is particularly simple because it 
avoids the use of elliptic coordinates. Two methods of 
solution are available. The method of Gdhner [1] and the 
method of toroidal elasticity (reference [2]). The method of 
Gdhner is used because it is the simpler. Numerical results are 
listed in Table 1 for five values of the ratio b/a. 

The analysis is limited to determining the first correction to 
the initial stress state for pure bending of an elliptic ring 
sector. 

Analysis 

The initial state for pure bending of an elliptic ring sector 
may betaken as: 

Ox = Oy= TXy = 0 

and 00 = —cEx, which is the stress distribution for pure 
bending of prismatical bars. Gdhner [1] has developed the 
next equations which are: 

do* 
dx 

dTxy 

dx 

VJ lxy 

SOy 

~o7 = 

cEx 

= 0 

= 0 

(1) 

These are the two equilibrium equations. In addition, the 
stress compatibility equations are: 

1 d2® 
Aax + 

ACT + , y \ + v 

\ + v dx2 

1 d2® 

= 0 

2+v\cE /2+v\cE 

a 2 © 

(2) 

xy 1 + v dxdy 
= 0 

where: 

and 

A denotes 
dx2 + by2 

© = ax + oy + Op 

Next we introduce a stress function <j>, such that 
cE 

2b2 

82<j> 

'dx2 

d24> 

dxdy 

'-\b2x2+a2y2-a2b2\ 
d2<j> 

(3) 

Director, LANG-Research West, Santa Monica, Calif. 90403. 
Manuscript received by ASME Applied Mechanics Division, May 1981; final 

revision, November, 1981. 

Fig. 1 Pure bending of ring section of elliptic cross section 

Both equilibrium equations are identically satisfied. 
The sum of the first three compatibility equations is 

cE 
A © = -

Subtracting 

so that 

Since 

cE 
x y 2b2R 

R 

2 + v\cE /2 + v\cb 

(4) 

A(CT, + o • ) = 
1 cE 

1 + e R 

(b2x2+a2y2-a2b2) + A<t> 

cE 

and 

AA0 = 

b2R 

cE{-vb2-{\ + v)a2) 

Rb2(l + v) 

Selecting for the stress function, <f>, the expression 

cEA0 

64R 
(b2x2+a2y2-a2b2)2 

(5) 

(6) 

we find 

_ cEA0 r (a2 + b2)2 + 2(b* +a4)l 

Comparing with equation (5), the constant A0 is: 

-m\ + v)a2 + vb2) 

b2(.i + v)[(a2+b2)2+2{a*+tf)] (7) 

Finally, take 

c E r -> 7 , 

i= -^[Co+ctx
2+c2y

2] 

and adjust c0 so there is no resultant force on a cross section 

N = 0= y\p6dxdy=C— ] ](c0 +c,x2 +c2y
2)dxdy 

\abc0 
a3b ab3 

+ C ' ~ r + C 2 x ] 
or 

l ^ ^ } (8) 

It remains to determine cl and c2 from the compatibility 
equation. The last compatibility equation is identically 
satisfied. 
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Table 1 Numerical results 

b~ Multiplier 0.5a 0.15a 1.5a 2a 

cE 

Ra4 

cE 

R 

cE 

R 

cEa2 

Co 

-9.1789 

•1.0752 

0.1907 

0.2569 

-3.1666 

1.0897 

0.2051 

0.2436 

1.2308 

1.0923 

0.1500 

0.2212 

-0.01507 

1.4160 

-0.1959 

0.4642 

-0.0625 

1.0635 

0.1790 

0.0864 

(c0-c,o2) 

(ae) (inner) 

a 

R 

cEa 

cEa 

0.3102 0.3656 0.6381 

-0.8183 

-0.0717 

-0.8461 

-0.1252 

-0.8711 

0.1538 

0.0239 

-0.9518 

-0.0095 

0.8178 

-0.9766 

-0.1304 

Equation (6) satisfies the boundary conditions which reduce 
to 

0 = 0 and — = 0 
dn 

Noting that the stresses are: 

cE 
ax = —^ [b2x2+a2y2 -a2b2] x 2b2R ' 

cEA0a
2 

16R 

cEA 

[3a2y2 +b2x2 -a2b2] 

l6b2R 
£. n ^ 2 v 2 J-^2,,2 _ „ 2 f , 2 [3b2x2 +a2y2-a2b2], 

cEA, 

SR 
0 / 2 (a2b2xy) 

l + v b2 

" = f K * 2 - T ) + C 2 ( ' 2 " T ) 

[ 
The first compatibility equation reduces to 

2 + v a2 A0a
2 [3a2(l + v) + h2(2 + v) 

(l + »0 

3 A0b
4 2c, 

l + v l + v 

from which 

o2 
aL (2+v\ 

- -2 [3a4(l + v) + a2b2(2+v) + 3b4] 
16 

The second compatibility equation is: 

a2 3 A0a
4 2c2 

+ ^r TT~ +• b2(l + v) 8 (l + v) l + v 

+ 

from which 

A0b
2 

8(1 + v) 
[3b2(l + v) + (2+v)a2] = 0 

c2 
a1-

2b2 16 
- [3b4(l + v) + a2b2(2+v) + 3a4] 

Then, using equation (8), 

a4(l + v) + a2b2(3 + v) A0 

Sb2 + — [3(1 + v)(a6 + b6) 
64 

+ (5 + v)a4b2+(5 + v)a2b4] 

Determination of the Constant, c 

The constant c is determined by the moment equation 

M= \ \ — ogxdx dy 

0=5J-% M„ = xdx dy = 
cEbai 7r 

For the more complete solution 

M1 = \j^eixdxdy=C—(3a2b'c2-cla
4b) 

and 

M=M0+Mt 

To the first approximation 

AM 
cE= 

irba3 

To the next approximation 

We write this as 

where: 
\ l + * 0 ' 

AM / 1 
irba3 

SiraR 
[3b2c2-Cla

2] 

Numerical results for the constants A0, c,, c2, c0, and k0 

are given in Table 1 together with the value of stress ae at the 
innermost point. The initial state of stress is omitted from 
Table 1. 
Results for Stress at Inner Point (x=a) 

Using the results of Table 1, we have 
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-cEa + cE(c0 -cta
2) 

• -K^P] 
For b = 0.5a 

AM 

irba* 

1+0.8133 -
R 

Ll+0.3102 
R 

AM r a 
1+0.5081 - + . 

For b = a 

o0 = 
AM 

•wba1. 

irba3 

1+0.8711 

.1+0.6381 -
R 

R 

irba3 

AM 

irba* 
[l+0.233| +. . . . ] 

For b = 2a 

AM 
1+0.9766 

Ll+0.8178 
R 

AM r a 
r- 1+0 .1588- + . 

•rcba3 I R 
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The Vibrating Beam With Nonhomogeneous 
Boundary Conditions1 

H. D. Fisher2. The author is to be congratulated for 
presenting a new solution method (subsequently designated 
the E method) for a class of time-dependent boundary value 
problems. The purpose of this discussion is to explore the 
generality of the E method and to present a detailed com
parison of it with the widely used Mindlin-Goodman method 
(denoted here the M-G method) which is the author's 
reference [1]. The discusser was motivated to investigate the 
present problem by related research [1-3] in second-order 
systems. 

The range of applicability of the E method is readily 
ascertained by expressing (1 .2 - here the first number refers to 
the author's paper and the second to the numbered equation 
in that paper) and the last of the boundary conditions as 

y(x,t) = Y(x,t) + F(x) T(t)+G(x)tt(t) (1) 

and 

yxx(*,t)=WV) (2) 

where j3 is an arbitrary constant, T(t) and R(t) are time-
dependent functions, and • denotes the derivative with respect 
to time. Taking the required derivatives of (1) and substituting 
into (1.1), gives (1.3) and the previously derived coupled 
system 

F""(X)-F(X)=2G(X) (3) 

G""(X)-G(X)=0 (4) 

if, and only if, 

Thus from (5) 

T(t)+a2T(t)=0 (5) 

T(t)=Alsmat + A2cosat (6) 

where A, and/ l 2 are arbitrary constants. Substituting into the 
initial boundary conditions gives the earlier equations con
straining Y, F, and G with the exception that the final 
restriction on Fis replaced by 

F"(TT) = /3 (7) 

This substitution also discloses that 

R(t) = T(t) (8) 

Equation (8) demonstrates that the E method, which requires 
that (3) and (4) be satisfied, is applicable exclusively to beam 
responses produced by sinusoid excitation. 

Edstrom, C.R., and published in the September, 1981 issue of the ASME 
JOURNAL OF APPLIED MECHANICS, Vol. 48, pp. 669-670. 

Consulting Engineer, Mechanical Design Department, Combustion 
Engineering, Inc., 1000 Prospect Hill Road, Windsor, Conn. 06095. 

Following the author's procedure, the solution to the 
problem described in the foregoing is given by (1) with 

^(x»?) = \j (AAnsman2t+Aincosan2t)smnx 

15 /sinhx x \ 
F(x) =Aisinx+-~( -— h-cosx) 

2 Vsinrnr ir / 

G{x) = - s i r u 
IT 

Here/13 is an arbitrary constant and 

Y, (x,0) sinnxdx 4" UonOlc 

A5„ = ( - ) 1 Y(x,o) sinnxdx 

(9) 

(10) 

(11) 

(12) 

(13) 

with 

Y(x,0)=-A2F(x) (14) 

Y,(xfi)=-aA][F(x)+G(x)] (15) 

The author's solution for the case when (3 = 4Air and 
R(t) =sina/ is readily derived from (1) comparing (10) and 
the first of (1.5) yields 

A3= -5A (16) 

and from (8) and (6) 

Al=l,A2=0 (17) 

Employing (16) and (17) in (12)-(15) simplifies (1) to (1.6) as 
required. 

To solve (1.1) subject to the boundary conditions given in 
the author's paper, the M-G method requires that 

y(x,t) = Y(x,t)+H(x)T(t) 

with 

1A , 
H(x) = - (x3 - w2x) 

and 

T(t) =sina? 

Here Y(x,t) satisfies the nonhomogeneous PDE 

2a2A 

(18) 

(19) 

(20) 

ofY^W + YnW)-- (x3-TT2x)sinat (21) 

together with the homogeneous boundary conditions (1.4) and 
the nonhomogeneous initial conditions 

r(x,0) = 0 (22) 

2aA , , 
Y,(X,0)= — {TT2X-X3) (23) 
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DISCUSSION 

Inserting (19), (20), and the solution of (21)-(23) into (18) 
yields 

' x3 --7r2x-t-6siruc\ 
, 0 = M [ ( — y(x,t) = 12 

isina/ 

atcosatsxxvc ( - 1 ) " 
' 2 « 3 ( « 4 - l ) 

sinaOsinnx 

(n2sman2t 

(24) 

The equality of (1.6) and (24) follows since it can be shown 
that 

2(x} - ir2x) „ „ . 2TTsinluf 
2^cosx+9sinj\:-

sinh7r 

( - l ) " + , s in«x 

n 3 ( n 4 - l ) 
(25) 

Because the M-G method has wider applicability than the E 
method, it remains the standard method of solution for beams 
subjected to time-dependent boundary excitation. However, 
for problems involving sinusoidal excitation only, the E 
method provides an alternate solution. 

References 

1 Fisher, H. D., Cepkaukas, M. M., and Chandra, S., "Solution of Time-
Dependent Boundary Value Problems by the Boundary Operator Method," 
International Journal of Solids and Structures, Vol. 15, 1979, pp. 607-614. 

2 Fisher, H. D., "Solution of a Generalized One-Dimensional Wave 
Equation by the Boundary Operator Method," Journal of Sound and 
Vibration, Vol. 79, No. 2, 1981, pp. 316-318. 

3 Fisher, H. D., "A Generalized Wave Equation in Finite Domains," 
Journal of the Engineering Mechanics Division, American Society of Civil 
Engineers, Vol. 108, No. 1, 1982, pp. 155-163. 

Author's Closure 

H. D. Fisher's statement "that the E method is applicable 
exclusively to beam responses produced by sinusoid ex
citation" is not correct. The E method can be applied to 
boundary value problems with other boundary conditions. In 
the Brief Note it was not the author's intent to describe the 
most general case, but instead to show one illustration of the 
method. For more generality we have the following. 

The existence of a form for the change of dependent 
variable depends on the properties of the functions that are 
prescribed on the boundaries. If these functions possess a 
finite number of linearly independent derivatives, then the 
form for the change of dependent variable should contain a 
linear combination of these functions and all of their linearly 
independent derivatives. However, in place of constants in 
this linear combination there should be functions of the 
variable held fixed on the boundary. Also, if the partial 
differential equation is separable as well as homogeneous, the 
particular product solutions can be determined. A com
parison of these product solutions with the linear combination 
of the boundary functions and all of their derivatives will 
determine the need for either a bounded or unbounded form 
for the change of dependent variable. Thus, since the form for 
the change of dependent variable depends on the prescribed 
functions on the boundaries as well as the partial differential 
equation, the range of applicability of this method cannot be 
ascertained by generalizing the form of the change of 
dependent variable I used in the illustration of this method. 

On the Formulation of Strain-Space Plasticity 
With Multiple Loading Surfaces1 

J. Casey2 and P. M. Naghdi3. We take exception to a 
number of points made in the paper of Yoder and Iwan [1], 
and especially to their claim that the stress-space and strain-
space formulations of plasticity are equivalent. Although in 
[1] both single and multiple loading surfaces are employed, it 
suffices for the purpose of this discussion to consider only the 
case of single loading surfaces. 

The possibility of using a strain-space (rather than a stress-
space) formulation of plasticity has been mentioned by 
several authors in the past. However, the physical significance 
of the use of the strain-space formulation was first brought 
out in the paper of Naghdi and Trapp [2]. To elaborate, it was 
observed by Naghdi and Trapp [2] that the stress-space 
formulation of plasticity leads to unreliable results in any 
region such as that corresponding to the maximum point of 
engineering stress versus engineering strain curve for uniaxial 
tension of a typical ductile metal. After also observing that 
the stress-space formulation does not reduce directly to the 
theory of elastic-perfectly plastic materials, and that a 
separate formulation for the latter is required, Naghdi and 
Trapp [2] proposed an alternative strain-space formulation of 
plasticity which: 

(a) is valid for the full range of elastic-plastic deformation; 
and 

(b) includes as a special case, the theory of elastic-perfectly 
plastic materials. 

The strain-space formulation was further elaborated in [3], 
which also contains a discussion of restrictions imposed on 
constitutive equations by a work assumption that was 
originally introduced in a strain-space setting by Naghdi and 
Trapp [4]. Additional related developments utilizing the 
strain-space formulation are contained in [5-7]. 

Yoder and Iwan [1, p. 774] state: "(Naghdi) did not 
establish equivalence between stress and strain space loading 
criteria . . . . " Actually, Naghdi and Trapp did undertake a 
comparison between the two independently postulated sets of 
loading criteria. They concluded that a correspondence 
between the two sets could be established for all conditions 
except that of loading from an elastic-plastic state. They 
observed [2, p. 792]: " . . . n o general conclusion can be 
reached regarding the correspondence or equivalence of g>0 
(the loading criterion in strain space) and / > 0 (the loading 
criterion in stress space)." 

Once a strain-space formulation is adopted, stress appears 
as a dependent variable, and it is conceivable that certain 
conditions in stress space might be induced by the conditions 
that are assumed in strain space. If this were indeed the case, 
then it would not be necessary, or even desirable, to postulate 
independent conditions in both strain space and stress space. 
This is the point of view that was taken by Casey and Naghdi 
[7], who showed that, in fact, the loading conditions in stress 
space are determined by those in strain space through the 
constitutive equations of the theory. However, the conditions 
induced in stress space during loading are not identical to 
those of the strain-space formulation, nor do they imply the 
loading conditions of the strain-space formulation4. 

By P. S. Yoder and W. D. Iwan, and published in the December, 1981, issue 
of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 48, pp. 773-778. 
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Department of Mechanical Engineering, University of California, Berkeley, 
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For a summary of the relationship between the conditions in stress space 
and the loading criteria in strain space, see [7, Table 1]. 
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Inserting (19), (20), and the solution of (21)-(23) into (18) 
yields 

' x3 --7r2x-t-6siruc\ 
, 0 = M [ ( — y(x,t) = 12 

isina/ 

atcosatsxxvc ( - 1 ) " 
' 2 « 3 ( « 4 - l ) 

sinaOsinnx 

(n2sman2t 

(24) 

The equality of (1.6) and (24) follows since it can be shown 
that 

2(x} - ir2x) „ „ . 2TTsinluf 
2^cosx+9sinj\:-

sinh7r 

( - l ) " + , s in«x 

n 3 ( n 4 - l ) 
(25) 

Because the M-G method has wider applicability than the E 
method, it remains the standard method of solution for beams 
subjected to time-dependent boundary excitation. However, 
for problems involving sinusoidal excitation only, the E 
method provides an alternate solution. 
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Author's Closure 

H. D. Fisher's statement "that the E method is applicable 
exclusively to beam responses produced by sinusoid ex
citation" is not correct. The E method can be applied to 
boundary value problems with other boundary conditions. In 
the Brief Note it was not the author's intent to describe the 
most general case, but instead to show one illustration of the 
method. For more generality we have the following. 

The existence of a form for the change of dependent 
variable depends on the properties of the functions that are 
prescribed on the boundaries. If these functions possess a 
finite number of linearly independent derivatives, then the 
form for the change of dependent variable should contain a 
linear combination of these functions and all of their linearly 
independent derivatives. However, in place of constants in 
this linear combination there should be functions of the 
variable held fixed on the boundary. Also, if the partial 
differential equation is separable as well as homogeneous, the 
particular product solutions can be determined. A com
parison of these product solutions with the linear combination 
of the boundary functions and all of their derivatives will 
determine the need for either a bounded or unbounded form 
for the change of dependent variable. Thus, since the form for 
the change of dependent variable depends on the prescribed 
functions on the boundaries as well as the partial differential 
equation, the range of applicability of this method cannot be 
ascertained by generalizing the form of the change of 
dependent variable I used in the illustration of this method. 

On the Formulation of Strain-Space Plasticity 
With Multiple Loading Surfaces1 

J. Casey2 and P. M. Naghdi3. We take exception to a 
number of points made in the paper of Yoder and Iwan [1], 
and especially to their claim that the stress-space and strain-
space formulations of plasticity are equivalent. Although in 
[1] both single and multiple loading surfaces are employed, it 
suffices for the purpose of this discussion to consider only the 
case of single loading surfaces. 

The possibility of using a strain-space (rather than a stress-
space) formulation of plasticity has been mentioned by 
several authors in the past. However, the physical significance 
of the use of the strain-space formulation was first brought 
out in the paper of Naghdi and Trapp [2]. To elaborate, it was 
observed by Naghdi and Trapp [2] that the stress-space 
formulation of plasticity leads to unreliable results in any 
region such as that corresponding to the maximum point of 
engineering stress versus engineering strain curve for uniaxial 
tension of a typical ductile metal. After also observing that 
the stress-space formulation does not reduce directly to the 
theory of elastic-perfectly plastic materials, and that a 
separate formulation for the latter is required, Naghdi and 
Trapp [2] proposed an alternative strain-space formulation of 
plasticity which: 

(a) is valid for the full range of elastic-plastic deformation; 
and 

(b) includes as a special case, the theory of elastic-perfectly 
plastic materials. 

The strain-space formulation was further elaborated in [3], 
which also contains a discussion of restrictions imposed on 
constitutive equations by a work assumption that was 
originally introduced in a strain-space setting by Naghdi and 
Trapp [4]. Additional related developments utilizing the 
strain-space formulation are contained in [5-7]. 

Yoder and Iwan [1, p. 774] state: "(Naghdi) did not 
establish equivalence between stress and strain space loading 
criteria . . . . " Actually, Naghdi and Trapp did undertake a 
comparison between the two independently postulated sets of 
loading criteria. They concluded that a correspondence 
between the two sets could be established for all conditions 
except that of loading from an elastic-plastic state. They 
observed [2, p. 792]: " . . . n o general conclusion can be 
reached regarding the correspondence or equivalence of g>0 
(the loading criterion in strain space) and / > 0 (the loading 
criterion in stress space)." 

Once a strain-space formulation is adopted, stress appears 
as a dependent variable, and it is conceivable that certain 
conditions in stress space might be induced by the conditions 
that are assumed in strain space. If this were indeed the case, 
then it would not be necessary, or even desirable, to postulate 
independent conditions in both strain space and stress space. 
This is the point of view that was taken by Casey and Naghdi 
[7], who showed that, in fact, the loading conditions in stress 
space are determined by those in strain space through the 
constitutive equations of the theory. However, the conditions 
induced in stress space during loading are not identical to 
those of the strain-space formulation, nor do they imply the 
loading conditions of the strain-space formulation4. 
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For a summary of the relationship between the conditions in stress space 
and the loading criteria in strain space, see [7, Table 1]. 
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Geometrically, during loading the yield surface in strain space 
is always moving outward locally, whereas the corresponding 
yield surface in stress space may concurrently be moving 
outward, inward, or may be stationary. It should therefore be 
clear that the stress-space and strain-space formulations are 
not equivalent. 

Our preference for choosing the loading criteria of strain 
space as primary in [7] was motivated by the limitations of the 
stress-space formulation that were mentioned in the 
foregoing. This leads [7] to a characterization of strain-
hardening in terms of a rate-independent dimensionless 
quotient / /g (with g>0) . A parallel analysis based on the 
possibility of taking the loading criteria of stress space as 
primary would lead to a characterization in terms of g/f (with 
/ > 0 ) - obviously, this characterization would be inap
propriate if elastic-perfectly plastic behavior were also to be 
included, as indeed it must. 

If the loading criteria of strain space are adopted as 
primary, then certain features of the work of Yoder and Iwan 
[1] may be obtained as a special case of that of Casey and 
Naghdi [7]. However, a demonstration of this requires 
considerable mathematical details; and, in the interest of 
keeping this discussion brief, the additional developments will 
be provided elsewhere. Finally, it may be emphasized that the 
basic theory of [2-7] is not limited to infinitesimal defor
mation and is valid for finite deformation of elastic-plastic 
materials. 

References 

1 Yoder, P. J,, and lwan, W. D., "On the Formulation of Strain-Space 
Plasticity With Multiple Loading Surfaces," ASME JOURNAL OF APPLIED 
MECHANICS, Vol. 48, 1981, pp. 773-778. 

2 Naghdi, P. M., and Trapp, J. A., "The Significance of Formulating 
Plasticity Theory With Reference to Loading Surfaces in Strain Space," Int. J. 
Eng. Sci., Vol. 13, 1975, pp. 785-797. 

3 Naghdi, P. M., "Some Constitutive Restrictions in Plasticity," Proc. 
Symp. on Constitutive Equations in Viscoplasticity: Computational and 
Engineering Aspects, AMD Vol. 20, 1976, pp. 79-93. 

4 Naghdi, P. M., and Trapp, J. A., "Restrictions on Constitutive Equations 
of Finitely Deformed Elastic-Plastic Materials," Quart. J. Mech. Appl. Math., 
Vol.28, 1975, pp. 25-46. 

5 Naghdi, P. M., and Trapp, J. A., "On the Nature of Normality of Plastic 
Strain Rate and Convexity of Yield Surfaces in Plasticity," ASME JOURNAL OF 
APPLIED MECHANICS, Vol. 42, 1975, pp. 61 -66. 

6 Caulk, D. A., and Naghdi, P. M., "On the Hardening Response in Small 
Deformation of Metals," ASME JOURNAL OF APPLIED MECHANICS, Vol. 45, 
1978, pp.755-764. 

7 Casey, J., and Naghdi, P. M., "On the Characterization of Strain-
Hardening in Plasticity," ASME JOURNAL OF APPLIED MECHANICS, Vol. 48, 
1981, pp.285-296. 

Authors' Closure 

In view of Naghdi's pioneering efforts in the area of strain-
space plasticity, we appreciate the careful attention that he 
and Casey have devoted to our recent paper [1]. It occurs to us 
that many of the points they raise in regard to the subject 
paper stem not so much from disagreements of substance as 
from the differing points of view from which we approach the 
matter of a strain-space formulation. 

As noted in the introduction to [1], the analytical work 
documented therein was motivated in large part by the quest 
for more accurate and more efficient computational 
algorithms for plasticity. A follow-up paper [2], soon to 
appear, will present some numerical results intended to 
demonstrate the inherent superiority of the strain-space 
theory for computational applications. To keep this point 
from being obscured, it was decided to sidestep, for the time 
being, the question of finite deformations and cast the 
analysis of [1] and [2] within the traditional framework of the 
small-strain theory. Plasticity has, as a matter of fact, been 

Journal of Applied Mechanics 

extended to handle finite deformations in a number of dif
ferent ways, as outlined by McMeeking and Rice [3]. Their 
recommendations on the matter, recently elaborated on by 
Hughes and Winget [4], do not precisely parallel those of 
Naghdi [5-7]. Naghdi's approach, therefore, appealing as it 
might be, is not the only possibility at hand, nor is it somehow 
inextricably linked to the concept of strain-space plasticity. 

In describing the relationship between the stress and strain-
space formulations, much of our language was influenced by 
a desire to address issues involved in the computational 
implementation of plasticity theory. So far as the authors 
know, previous computational algorithms for plasticity 
theory have been based on the notion of loading surfaces in 
stress space.This is true whether the algorithms were designed 
to deal with strain-hardening, perfectly plastic, or strain-
softening behavior. Accordingly, it seemed natural to use the 
expression stress-space plasticity in a rather broad sense that 
includes whatever formulations might be necessary to describe 
these three cases in terms of stress-space loading surfaces. It 
appears in retrospect that some readers of [1] may have been 
confused concerning the intended scope of the presentation. It 
should be emphasized that constitutive law [T] as presented in 
the paper is appropriate only for the case of strain hardening 
(A>0). The stress-space formulations applicable to perfect 
plasticity (A = 0) and to strain softening (A<0) are omitted 
from [1] for brevity but may be found in reference [8], 

Never was there any intention to suggest that the strain-
hardening constitutive law [T] could be used interchangeably 
with [C] in cases of perfect plasticity or strain softening. The 
authors wholeheartedly agree with Casey and Naghdi that 
statement (7), or / > 0 in their notation, would be a most 
unacceptable criterion for loading in cases of perfect plasticity 
or strain softening. It was never claimed that the loading 
conditions induced in stress space were "identical" to those in 
strain space. That they could not be identical is obvious 
because, as Casey and Naghdi point out, during loading the 
relaxation surface in strain space is moving outward locally 
while the yield surface in stress space may be moving outward, 
inward, or may be stationary. This conclusion in fact follows 
directly from an extension of the concepts presented in the 
authors' paper [8]. This observation does not in any way 
conflict with the idea of "equivalence" as used by the 
authors. 

The authors submit that [C] and [F], as specified in their 
paper, can be used interchangeably in cases of strain har
dening provided the model parameters are interrelated 
through equations (18)-(20). In this regard it would perhaps 
be helpful to discuss in more detail the reasons for using the 
word equivalence to describe this relationship. It should be 
noted that <r" and ip, as defined through equations (5) and 
(15), are merely alternative indications of the deviation from 
Hookean linearity. Until some assumptions are made 
regarding the manner in which they evolve as deformation 
proceeds, their use cannot in any way impose restrictions on 
the mechanical response. Similarly, the loading functions F 
and 4> are powerless to influence the material behavior until 
either [C] or [r] is activated. Thus it is possible at any stage 
during the deformation to compute values for both D and A, 
based on the stress and strain history, without in any way 
influencing the relationship between the next stress and strain 
increments. Now, it is shown in [8] that if A>0 and [C] is 
valid, then so is [T]. The scheme of the proof is as follows: 

(a) => (a) ; 
(0) and (7) =» (b) and (c) 

(d) 
(5) ; 

not ((3) or not (7) => not (b) or not (c) 
(e) 
(e) • 
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DISCUSSION 

In a similar way, if A>0, [r] => [C]. Analogous results can 
also be obtained for cases of perfect plasticity (A = 0) and 
strain softening (A<0) [8]-provided the stress-space for
mulations are properly framed. This is what the authors mean 
by the word equivalent. 

We apologize if the use of this word has proved misleading 
to some readers of the subject paper. The main point to be 
stressed is that in designing a computational algorithm for 
plasticity, one is at liberty to work from either the stress or 
strain-space version, whichever is more convenient, since the 
two approaches can, with certain restrictions, be made to 
yield the same physical behavior. The computational ex
perience reported in [2] and [8] lends additional support to the 
interchangeability of these two formulations. 
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I The Annular Membrane Under Axial Load' 

Robert Schmidt.2 Let us introduce auxiliary notations x, y, 
z, and p defined by 

r\x=r2, 4Dy = r2Nr, (la,b) 

2i/2tz=[3(\-v2)]W2rf3, (Ic) 

25/2 irEt4p = [3(1 - v2)f/2r2
2P, (Id) 

where D = Eti /\2(\ — v2), and the remaining symbols have the 
meaning assigned to them in the Note under discussion. With 
these notations, the nonlinear differential equations [1] 
governing moderately large axisymmetric deflections of 
circular plates become [2, 3] 

x2y" = -z2, x2z" =yz+px, (2a,b) 

where primes denote derivatives with respect to x. 
For a membrane, the foregoing equations reduce to 

x2y" = -z2, yz=-px, Qa,b) 

and finally to Schwerin's form [4] 

y2y" = -p2, (4) 

By D. J. Allman and E. H. Mansfield, and published in the December, 
1981, issue of the ASME JOURNAL OF APPLIED MECHANICS, Vol. 48, pp. 
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which possesses closed-form general implicit and special 
explicit solutions [4, 5], both of which were published by 
Schwerin in 1929 [4].3 Needless to say, Schwerin was rather 
proud of his discovery, which doubled the number of known 
closed-form solutions in the theory of slack membranes from 
one to two. The authors of the present Note have simply 
rediscovered Schwerin's special solution, which is valid for 
e = l / 3 . 

Much later, closed-form solutions, similar to Schwerin's, 
were obtained by Jahsman, Field, and Holmes [5] for a 
prestretched axisymmetrical membrane, and by E. Reissner 
for a spherical membrane. 
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it should be rioted that equation (4) is analogous to the differential equation 
/• /: = const., describing the free fall of two spherical bodies toward each other. 

I The Annular Membrane Under Axial Load1 

C. W. Bert2. The authors are to be congratulated for ob
taining a closed-form solution for a nonlinear problem which 
has not been solved previously in the context of the Foppl 
theory [1] used. The limitations of the Foppl theory have been 
discussed by Junkin and Davis [2] in comparison with an 
exact membrane theory obtained from Budiansky's shell 
equations [3]. In reference [2], it was shown that Foppl's 
theory is valid only when the ratio of the deflection to the 
outside radius is small compared to unity. Nevertheless, using 
order-of-magnitude considerations, reference [2] obtained, 
for v= 1/3, a closed-form solution equivalent to that obtained 
by the authors. 
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In a similar way, if A>0, [r] => [C]. Analogous results can 
also be obtained for cases of perfect plasticity (A = 0) and 
strain softening (A<0) [8]-provided the stress-space for
mulations are properly framed. This is what the authors mean 
by the word equivalent. 

We apologize if the use of this word has proved misleading 
to some readers of the subject paper. The main point to be 
stressed is that in designing a computational algorithm for 
plasticity, one is at liberty to work from either the stress or 
strain-space version, whichever is more convenient, since the 
two approaches can, with certain restrictions, be made to 
yield the same physical behavior. The computational ex
perience reported in [2] and [8] lends additional support to the 
interchangeability of these two formulations. 
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Even in the context of the Foppl theory, the second of 
equations (2), is not quite correct, since it involves an extra 
derivative with respect to radius. The correct equation is 

d r l d ( rf*\l 1 fdw\2 

Then equation (6) becomes 

cj32(0-2)re-2 + -Et k2a2r2a-2=Q (2) 

Fortunately, the solution obtained by the authors, as 
manifested in their equations (3), (4), and (7), satisfies the 
preceding corrected equations and thus is still correct. 

The lower order in equation (1) follows directly from the 
appropriate compatibility equation for this problem: 

d 1 (dw\ 2 

since the strain-displacement relations are: 

du 1 /dw\2 

To compare results with an existing numerical solution [4] 
(not based on Foppl's theory), the authors' equations can be 
cast in the following dimensionless form 

wm ax/ '-2=(6/)1 / 3(l-p2 / 3) (5) 

(ff,.)max/£=(9/16) l /3/2/3p -2 / 3 (6) 

where p = rt/r2, f=P/2irEtr2. It is interesting to note that 
although Lidin's analysis [4] is not based on Foppl's theory, 
Lidin obtained the same form of the variation of wmax/V2 and 
(°r) maxZ-E with/as in equations (5) and (6). However, there is 
some difference between the respective dependencies on p, as 
can be seen in the following tabulation: 

It is noted that Lidin's result is purportedly valid for any 
Poisson's ratio, yet it is independent of Poisson's ratio, which 
seems unusual from a physical viewpoint. 
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Author's Closure 

The authors are pleased to note the interest shown in their 
paper by Professor Bert and they are indebted to him for the 
valuable comparison of results with earlier work. 

In response to his discussion, however, it must be restated 
here that the second of equations (2) is the correct Foppl 
equation (which is of fourth order) for the annular membrane 
under axial load. The third-order equation derived from first 
principles by Professor Bert is recognized as the first integral 
of the Foppl equation with the constant of integration zero, as 
is necessary for a solution of equation (6) to be obtained. 

A subsequent paper [1] by the first author, which uses a 
variational formulation of Foppl's theory to obtain ap
proximate solutions for the annular membrane under axial 
load, will also be published soon. Numerical results are 
presented there for a range of values of Poisson's ratio in
cluding the value of one-third considered in the present work. 
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Values of wnmx/rif
[n Values of (5,.) mm/Ef2n 

Radius ratio p Allman & Mansfield [4] Allman & Mansfield [4] 

0.1 1.426 1.239 3.832 3.906 
0.3 1.003 0.9042 1.842 1.735 
0.5 0.6724 0.6849 1.310 1.201 
0.7 0.3846 0.4287 1.047 0.8697 
0.9 0.1233 0.2394 0.8856 0.5420 
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The Physics of Deformation and Flow. By E. W. Billington 
and A. Tate. McGraw-Hill, New York, 1981. pp. xx-626. 
Price $59.00. 

Biomechanics. Mechanical Properties of Living Tissues. By 
Y. C. Fung. Springer-Verlag, New York, Heidelberg, Berlin, 
1981. 433 pages. Price $23.85. 

REVIEWED BY DANIEL C. DRUCKER1 

REVIEWED BY RICHARD SKALAK2 

This is a most unusual book of great value to those entering 
the field or changing the direction of their research. It is 
unusual because of its broad coverage from advanced 
mathematics to simple experiments, from linear and nonlinear 
fluids, and linear and nonlinear elastic solids to plastic solids, 
and because of its aim to bring together, in a meaningful way 
and at a high level, both macroscopic and microscopic 
physical behavior within a broad set of current continuum 
mechanics approaches. A remarkable compartmentalization 
of approach is employed without comment in a most suc
cessful innovation. Each major section is written primarily 
from the viewpoint of those who developed that specific area 
in its present form. The authors exercise judgment in the 
choices they make of inclusion or omission but then carefully 
display the mathematics and the physical arguments to 
represent the school of thought (as of June 1979) without the 
distraction of contrary viewpoints. Consequently there is 
much with which each expert will disagree but much more that 
will prove helpful in achieving greater understanding. Ample 
reference is made to the relevant literature needed to follow 
up on the background presented. 

The work of Truesdell, Toupin, and Noll, to which ex
tensive credit is given, is preceded by a mathematical in
troduction to scalars, vectors, and tensors. Yet this approach 
sits side by side with other sections from other points of view 
including both those that are primarily physically based and 
those that are reminiscent of Love and Lamb in their detailed 
writing of scalar equations. Appropriate sections are in
terspersed that give descriptions of electronic, atomic, and 
interatomic structure and forces, dislocations and dislocation 
structure of solids, molecular structure of fluids, statistical 
mechanics, and the results of basic continuum experiments. A 
full chapter is devoted to crystal plasticity between two 
chapters on continuum plasticity. Impact, dynamic plasticity, 
and shock waves receive the attention to be expected from the 
great interest of the authors in these fields, but the writing 
here is just as concise and effective as in the closing chapter on 
fracture, and throughout the book. The authors certainly 
have done well to provide the continuum mechanics 
background that would be of great help to materials scientists 
and engineers as well as the "useful reminder to those in
volved in continuum mechanics that the ultimate test of 
abstract theories lies in the laboratory." 

Dean, College of Engineering, University of Illinois at Urbana-Champaign, 
Urbana, 111. 61801. 

Biomechanics has grown rapidly in the last decade and it is 
a pleasure to report that in this book an acknowledged leader 
in the field has set down a connected account of much of the 
progress that has been made in recent years. The book in
cludes a good bit of anatomy, physiology, and analysis of 
systems, such as blood flow in tubes and muscle contraction, 
which entails more than just physical properties in the usual 
sense. The balance of materials presented serves the purposes 
of the book very well. It will be especially appreciated by 
students of biomechanics. It can be expected that 
physiologists will also find it of interest. Established workers 
in other branches of theoretical and applied mechanics who 
wish to have an authoritative and collected introduction to 
biomechanics will also find the book valuable. It will be a 
welcome textbook in courses in biomechanics. 

This book has a number of features that make it especially 
pleasurable to read. First is the open style and the alternation 
of biological background and analytical representation that 
gives a degree of integration which has been often lacking in 
both the mechanical and biological literatures. Second, there 
is a most interesting historical introduction in Chapter 1 
which points out that biomechanics is a fairly old subject. 
Although biomechanics is a relatively new word, which means 
the application of mechanics to biology, it turns out that the 
word mechanics is somewhat older than the word biology. 

Third, the exercises given in small print at the end of each 
chapter are unique in the biomechanical literature. In many 
cases they add to the content of the book by the ideas they 
suggest and the impetus to have the reader work out some of 
the details. Finally, as befits the subject, it may be seen from 
the reference lists in each chapter that a large fraction of the 
literature cited has been written in the last decade. Professor 
Fung is one of the few people who has kept up with the 
development of biomechanics on so many different fronts in 
the last decade and could single-handedly write this book for 
us. 

There are some items in this book that probably deserve 
special mention as they are distinct contributions to the 
literature. One of these is the discussion of extreme values in 
relation to red blood cell sizes. Another is the consideration of 
the mechanics and thermodynamics of biological tissues in a 
single format. The discussion of inversion of stress-strain 
relations is an original and interesting contribution. 

James Kip Finch Professor of Engineering Mechanics, Director, 
Bioengineering Institute, Department of Civil Engineering and Engineering 
Mechanics, Columbia University, New York, N. Y.. 10027. 
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One of the virtues of a book like this is that the different 
parts of the subject can be treated with a uniform vocabulary 
and approach. The basic definitions of stress, strain, strain 
rate, and viscoelasticity are given in Chapter 2. While this 
information may not be new to graduate students in applied 
mechanics, it is useful to have it written down and connected 
to biomechanics in an orderly way. Chapters 3, 4, and 5 deal 
with flow properties of blood, red blood cells, the deform-
ability, and the rheology of blood in the microvessels. These 
chapters will give a fresh survey of the complicated field of 
blood cell properties and blood rheology. These chapters are a 
good example of Professor Fung's ability to set down the 
main facts in clear form. There is a good bit of advanced 
analysis in the literature which is not given here in any detail. 
Examples would be the solution of Stokes equations for 
various particles in capillary flow and the many different 
models that have been studies for wave propagation in blood 
flow. Presumably these will be covered in two later volumes 
which Professor Fung has promised in the introduction to the 
present book. 

Bioviscoelastic fluids including protoplasm, mucous, 
saliva, cervical mucous, semen, and synovial fluid are treated 
in Chapter 6. Here again the main facts and adequate 
references are well summarized. 

The next five chapters deal with soft tissues and are largely 
drawn from the research work of Professor Fung, his 
associates, and students. Chapter 7, on bioviscoelastic solids, 
is an especially long and important chapter. It contains in
formative descriptions of elastin collagen. It also contains 
general discussion of thermodynamics of elastic deformation, 
generalized viscoelastic relations, the complementary energy 
function, and inversion of stress-strain relationships. The idea 
of pseudoelasticity using a model of one elastic material in 
loading and another elastic material in unloading is 
developed. The reduced relaxation function is introduced and 
illustrated in this chapter by application to experimental data 
on rabbit mesentary. The notion of the reduced relaxation 
function is used repeatedly in the remainder of the book. It 
allows a reduction of a good deal of data on soft tissues which 
is highly nonlinear in its elastic behavior but linear in its 
viscoelastic response. 

Chapter 8 deals with the mechanical properties of blood 
vessels. The arterial wall is another example in which the 
reduced relaxation function idea is useful. This chapter in
cludes discussions of capillary blood vessels and the sheet flow 
in the alveolar walls of the lung which was developed by 
Professor Fung and his associates. The chapter closes with a 
discussion of the properties of the veins but does not go into 
the many interesting phenomena that occur when veins 
collapse. These will no doubt appear in later volumes. 

The next three chapters, Chapters 9, 10, and 11 on skeletal 
muscle, heart muscle, and smooth muscles are like a minibook 
within the book, and surely represent a topic of great im
portance and particular interest. Here Professor Fung has 
tackled the difficult subject of describing the active con
traction of muscles as well as their passive behavior when 
relaxed. Although some fault is found with Hill's classical 
three-element model, it is clear that the discussion is still an 
imcomplete one. These chapters show that the variety and 
complexity of muscles is very great and a complete description 
must take into account a variety of detailed anatomical 
features and biochemical influences. The chapter on smooth 
muscle is most interesting, probably because the spontaneous 
cyclic contraction has an air of independence and mystery 
about it. 

The book closes with Chapter 12 on bone and cartilege. 
This is a comparatively short chapter but gives the main 
known facts about the structure, variability, and properites of 
bones. Although the strains are small because bones are stiff, 
the discussion of material properties is no less difficult than 

for soft tissues due to the complex heterogenity and 
anisotropy of bones. The questions of growth and resorption 
in bone are dealt with only briefly but at least more rationally 
than much of the literature. The last few sections on cartilege 
and lubrication of articular surfaces give the main effects 
leading to the very small coefficients of friction between 
typical articular cartilege surfaces. Synovial fluid was 
discussed previously in Chapter 6. 

There are omissions which one could complain about except 
that the subject is so large that something must be omitted. 
Workers interested in the cornea or other parts of the eye or 
the ear will probably feel left out. One area which has received 
no mention is that of the brain and neutral system. This 
reviewer is convinced that neural mechanics is under
developed, say, compared to vascular mechanics and that the 
return on such development would be very much worth
while. A discussion of teeth, the stiffness of their sockets, and 
the properties of the various components might also be of 
interest. Finally it should be pointed out that besides some 
data on frogs, almost all of properties discussed are of 
mammalian tissues. Fish, plants, seashells, and other in
teresting forms such as coral are not mentioned. Of course the 
inclusion of all of these topics might require another volume 
but people in agriculture and marine biology would probably 
like to see similar books for their fields. 

This is a book that will surely be a standard text for some 
time. We will all be looking forward to seeing the two ad
ditional volumes which are promised in the Introduction. The 
next volume will be on the mechanics of circulation and 
respiration. A third volume on advanced biomechanics will 
include recent developments where advanced methods in 
contiuum mechanics and analysis have to be used. As 
Professor Fung has so aptly said in his preface, 
"Biomechanics at the level or current research cannot be 
bound by elementary mathematics." We will look forward to 
the forthcoming volumes to be as interesting and useful as the 
present first fine volume. 

A Modern Course in Aeroelasticity. Edited by E. H. Dowell. 
By E. H. Dowell, H. C. Curtiss, Jr., R. H. Scanlan, and F. 
Sisto. Sijthoff and Noordhoff, Alpen aan den Rijn, The 
Netherlands, 1978. pp. v-464, Price $90.00. 

REVIEWED BY R. M. BENNETT3 

Aeroelasticity is an important hybrid field that treats the 
stability and response of flexible structures under fluid 
dynamic loading and includes the phenomena of flutter, 
divergence, buffeting, and gust response. The applications 
primarily involve aerospace vehicles but also include areas 
such as the civil engineering problems of the response of 
bridges, smoke stacks, and so forth, to wind loading. There 
are several well-known textbooks (references [1-4]) but they 
are several decades old and do not reflect recent developments 
and emphases. The two more recent books [5-6] are not 
available in English. This book is an effort to satisfy the need 
for a modern textbook. 

Chapters 1-4 are by Prof. Dowell. After a brief in
troduction (Chapter 1, 2 pages), static aeroelasticity (Chapter 
2, 44 pages) is considered. Deflection and divergence of a 
typical two-dimensional wing section are treated, followed by 
beam and surface representations of finite wings and by a 
brief section on the flow through flexible pipes. Chapter 3 

Aerospace Engineer, Unsteady Aerodynamics Branch, Loads and 
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One of the virtues of a book like this is that the different 
parts of the subject can be treated with a uniform vocabulary 
and approach. The basic definitions of stress, strain, strain 
rate, and viscoelasticity are given in Chapter 2. While this 
information may not be new to graduate students in applied 
mechanics, it is useful to have it written down and connected 
to biomechanics in an orderly way. Chapters 3, 4, and 5 deal 
with flow properties of blood, red blood cells, the deform-
ability, and the rheology of blood in the microvessels. These 
chapters will give a fresh survey of the complicated field of 
blood cell properties and blood rheology. These chapters are a 
good example of Professor Fung's ability to set down the 
main facts in clear form. There is a good bit of advanced 
analysis in the literature which is not given here in any detail. 
Examples would be the solution of Stokes equations for 
various particles in capillary flow and the many different 
models that have been studies for wave propagation in blood 
flow. Presumably these will be covered in two later volumes 
which Professor Fung has promised in the introduction to the 
present book. 

Bioviscoelastic fluids including protoplasm, mucous, 
saliva, cervical mucous, semen, and synovial fluid are treated 
in Chapter 6. Here again the main facts and adequate 
references are well summarized. 

The next five chapters deal with soft tissues and are largely 
drawn from the research work of Professor Fung, his 
associates, and students. Chapter 7, on bioviscoelastic solids, 
is an especially long and important chapter. It contains in
formative descriptions of elastin collagen. It also contains 
general discussion of thermodynamics of elastic deformation, 
generalized viscoelastic relations, the complementary energy 
function, and inversion of stress-strain relationships. The idea 
of pseudoelasticity using a model of one elastic material in 
loading and another elastic material in unloading is 
developed. The reduced relaxation function is introduced and 
illustrated in this chapter by application to experimental data 
on rabbit mesentary. The notion of the reduced relaxation 
function is used repeatedly in the remainder of the book. It 
allows a reduction of a good deal of data on soft tissues which 
is highly nonlinear in its elastic behavior but linear in its 
viscoelastic response. 

Chapter 8 deals with the mechanical properties of blood 
vessels. The arterial wall is another example in which the 
reduced relaxation function idea is useful. This chapter in
cludes discussions of capillary blood vessels and the sheet flow 
in the alveolar walls of the lung which was developed by 
Professor Fung and his associates. The chapter closes with a 
discussion of the properties of the veins but does not go into 
the many interesting phenomena that occur when veins 
collapse. These will no doubt appear in later volumes. 

The next three chapters, Chapters 9, 10, and 11 on skeletal 
muscle, heart muscle, and smooth muscles are like a minibook 
within the book, and surely represent a topic of great im
portance and particular interest. Here Professor Fung has 
tackled the difficult subject of describing the active con
traction of muscles as well as their passive behavior when 
relaxed. Although some fault is found with Hill's classical 
three-element model, it is clear that the discussion is still an 
imcomplete one. These chapters show that the variety and 
complexity of muscles is very great and a complete description 
must take into account a variety of detailed anatomical 
features and biochemical influences. The chapter on smooth 
muscle is most interesting, probably because the spontaneous 
cyclic contraction has an air of independence and mystery 
about it. 

The book closes with Chapter 12 on bone and cartilege. 
This is a comparatively short chapter but gives the main 
known facts about the structure, variability, and properites of 
bones. Although the strains are small because bones are stiff, 
the discussion of material properties is no less difficult than 

for soft tissues due to the complex heterogenity and 
anisotropy of bones. The questions of growth and resorption 
in bone are dealt with only briefly but at least more rationally 
than much of the literature. The last few sections on cartilege 
and lubrication of articular surfaces give the main effects 
leading to the very small coefficients of friction between 
typical articular cartilege surfaces. Synovial fluid was 
discussed previously in Chapter 6. 

There are omissions which one could complain about except 
that the subject is so large that something must be omitted. 
Workers interested in the cornea or other parts of the eye or 
the ear will probably feel left out. One area which has received 
no mention is that of the brain and neutral system. This 
reviewer is convinced that neural mechanics is under
developed, say, compared to vascular mechanics and that the 
return on such development would be very much worth
while. A discussion of teeth, the stiffness of their sockets, and 
the properties of the various components might also be of 
interest. Finally it should be pointed out that besides some 
data on frogs, almost all of properties discussed are of 
mammalian tissues. Fish, plants, seashells, and other in
teresting forms such as coral are not mentioned. Of course the 
inclusion of all of these topics might require another volume 
but people in agriculture and marine biology would probably 
like to see similar books for their fields. 

This is a book that will surely be a standard text for some 
time. We will all be looking forward to seeing the two ad
ditional volumes which are promised in the Introduction. The 
next volume will be on the mechanics of circulation and 
respiration. A third volume on advanced biomechanics will 
include recent developments where advanced methods in 
contiuum mechanics and analysis have to be used. As 
Professor Fung has so aptly said in his preface, 
"Biomechanics at the level or current research cannot be 
bound by elementary mathematics." We will look forward to 
the forthcoming volumes to be as interesting and useful as the 
present first fine volume. 

A Modern Course in Aeroelasticity. Edited by E. H. Dowell. 
By E. H. Dowell, H. C. Curtiss, Jr., R. H. Scanlan, and F. 
Sisto. Sijthoff and Noordhoff, Alpen aan den Rijn, The 
Netherlands, 1978. pp. v-464, Price $90.00. 

REVIEWED BY R. M. BENNETT3 

Aeroelasticity is an important hybrid field that treats the 
stability and response of flexible structures under fluid 
dynamic loading and includes the phenomena of flutter, 
divergence, buffeting, and gust response. The applications 
primarily involve aerospace vehicles but also include areas 
such as the civil engineering problems of the response of 
bridges, smoke stacks, and so forth, to wind loading. There 
are several well-known textbooks (references [1-4]) but they 
are several decades old and do not reflect recent developments 
and emphases. The two more recent books [5-6] are not 
available in English. This book is an effort to satisfy the need 
for a modern textbook. 

Chapters 1-4 are by Prof. Dowell. After a brief in
troduction (Chapter 1, 2 pages), static aeroelasticity (Chapter 
2, 44 pages) is considered. Deflection and divergence of a 
typical two-dimensional wing section are treated, followed by 
beam and surface representations of finite wings and by a 
brief section on the flow through flexible pipes. Chapter 3 

Aerospace Engineer, Unsteady Aerodynamics Branch, Loads and 
Aeroelasticity Division, NASA Langley Research Center, Hampton, Va. 23665. 

Journal of Applied Mechanics JUNE 1982, Vol. 49/465 

Copyright © 1982 by ASME
Downloaded 02 May 2010 to 171.66.16.246. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BOOK REVIEWS 

(112 pages) presents dynamic aeroelasticity starting with the 
basic principles and equations for the typical wing section, 
and progressing to the analysis of complex structures and pipe 
flows. Chapter 4 (108 pages) is on nonsteady aerodynamics of 
lifting and nonlifting surfaces. It starts with the basic fluid 
equations and takes the reader through subsonic and 
supersonic flows over airfoils and wings. Consistent with the 
current state of the art, unsteady transonic flows are described 
by approximate methods. 

Chapter 5 (14 pages), by Professor Sisto, discusses stall 
flutter. It gives an overview of the phenomena including a 
nonlinear mechanics description. In Chapter 6 (46 pages), 
Professor Scanlan gives a valuable and unique exposition of 
the aeroelastic problems of civil engineering structures such as 
divergence, vortex shedding, and flutter of bridges, and 
galloping of cables. Chapter 7 (56 pages) by Prof.Curtiss is on 
the aeroelastic problems of rotorcraft and gives a brief 
description of blade dynamics, stall flutter, and blade 
motion/body coupling. In Chapter 8 (28 pages), Prof. Sisto 
describes aeroelastic problems in turbomachines highlighting 
the special problems encountered in axial flow compressors. 

Appendix I (8 pages) by Prof. Dowell, is a primer for 
structural response to random pressure fluctuations and gives 
a good resume of an application of modern spectral analysis 
techniques. Appendix II (38 pages, Prof. Dowell) gives some 
example problems that are pertinent to Chapters 2-4 and their 
solutions. 

This book gives a good exposition of basic principles and a 
good overview of the diverse field of aeroelasticity from a 
modern point of view. As the title indicates, it is primarily 
directed as a textbook rather than to the practitioner. It 
supplements reference [1] rather than replacing it, however, as 
the range of topics considered are somewhat different. 
Further emphasis might have also been given to testing 
techniques and experimental results. The book is recom
mended and Profs. Dowell, Sisto, Scanlan, and Curtiss are to 
be commended for this addition to the literature. 
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The Calculus of Variations and Optimal Control. By George 
Leitmann. Plenum Press, New York, 1981, 311 pages. Price 
$35.00. 

REVIEWED BY DANIEL TABAK4 

A large variety of books covering the topics of calculus of 
variations and optimal control exists. Thus, a reader may 
naturally ask: what is so special about this book that would 
justify its addition to the practically oversaturated market? 
Once the book is read, the answer to this question becomes 
simple: it is not the contents of the book, but the way the book 
is written that makes it so special and outstanding. Before 
elucidating on this point, let us first look at the contents. 

The book covers the basic theory of the calculus of 
variations and optimal control. It is accordingly divided into 

Professor, Department of Electrical Engineering, P.O. Box 653, Ben-
Gurion University, Beer Sheva, Israel. 

two parts; Part I, Calculus of Variations (Chapters 1-8) and 
Part II, Optimal Control (Chapters 9-17). Part I includes the 
topics of necessary conditions for an extremum, integration 
of the Euler-Lagrange equation, the inverse problem, the 
Weierstrass and Jacobi necessary conditions, and the corner 
conditions. Part II includes the topics of optimality principle, 
optimal trajectories, Maximum Principle, special cases of 
optimal control problems, sufficient conditions, feedback 
control, and optimization with vector-valued cost. The last 
topic makes the book just about unique contents-wise; very 
few books touch on it. Practically all chapters contain 
illustrative examples and exercises for students. A list of 
references, an extensive bibliography and and index are given 
at the end of the book. 

The book contains a rigorous mathematical presentation of 
the basic theoretical results. At the same time it is very clearly 
written and easy to learn from and to teach with. (In fact, it 
has already been successfully used by this reviewer as a self-
paced text for graduate students.) Its numerous solved 
examples and clear figures make it even more attractive to the 
reader. It contains some specific economic and aerospace 
application examples of optimal control implementation. 

It is this particular combination of mathematical rigor with 
an excellent tutorial lucidity that makes the book so unique 
and its use so widely recommendable. The book can serve as a 
excellent primary text in optimal control for graduate 
students. Since it contains examples from many diverse areas, 
it is not restricted to any particular discipline. It can be used 
by students of engineering, mathematics, operations research, 
economics, and other related areas. 

Mechanics of Wave Forces on Offshore Structures. By T. 
Sarpkaya and M. Isaacson. Van Nostrand Reinhold, New 
York, 1981. pp. xiv-651. Price $37.50. 

REVIEWED BY J. V. WEHAUSEN5 

The authors' purpose, as stated in the preface, is to bring 
into one place the extensive and widely dispersed literature on 
wave forces on offshore structures. They speak of the work as 
a text and suggest that it could be used for a graduate course 
in ocean engineering. Have they succeeded? In my opinion 
they have, provided that one takes account of their approach 
to the problem of expounding a large amount of material. 

The book is divided into nine chapters, a short introduction 
discussing the nature of the engineering-problems encountered 
in analyzing ocean structures, another short chapter reviewing 
the fundamental equations for an incompressible Newtonian 
fluid, and then seven chapters with the following titles: "Flow 
Separation and Time-Dependent Flows," "Wave Theories," 
"Wave Forces on Small Bodies," "Wave Forces on Large 
Bodies," "Random Waves and Wave Forces," "Dynamic 
Response of Framed Structures and Vortex-Induced 
Oscillations," and "Models and Prototypes." 

Chapters may be read reasonably independently of one 
another, but may be considered self-contained only if one 
comes to the book with "a good background in mathematics 
and fluid mechanics," a prerequisite stated in the preface. 
With such a background, any serious reader will find this an 
invaluable guide to the current literature. Each chapter is 
followed by an extensive bibliography in which, with few 
exceptions, complete author, title, and source data are given, 
thus making it easy for the reader to locate referenced papers. 
Although developments within the chapters are not suf
ficiently detailed to allow one to avoid going back to the 
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(112 pages) presents dynamic aeroelasticity starting with the 
basic principles and equations for the typical wing section, 
and progressing to the analysis of complex structures and pipe 
flows. Chapter 4 (108 pages) is on nonsteady aerodynamics of 
lifting and nonlifting surfaces. It starts with the basic fluid 
equations and takes the reader through subsonic and 
supersonic flows over airfoils and wings. Consistent with the 
current state of the art, unsteady transonic flows are described 
by approximate methods. 

Chapter 5 (14 pages), by Professor Sisto, discusses stall 
flutter. It gives an overview of the phenomena including a 
nonlinear mechanics description. In Chapter 6 (46 pages), 
Professor Scanlan gives a valuable and unique exposition of 
the aeroelastic problems of civil engineering structures such as 
divergence, vortex shedding, and flutter of bridges, and 
galloping of cables. Chapter 7 (56 pages) by Prof.Curtiss is on 
the aeroelastic problems of rotorcraft and gives a brief 
description of blade dynamics, stall flutter, and blade 
motion/body coupling. In Chapter 8 (28 pages), Prof. Sisto 
describes aeroelastic problems in turbomachines highlighting 
the special problems encountered in axial flow compressors. 

Appendix I (8 pages) by Prof. Dowell, is a primer for 
structural response to random pressure fluctuations and gives 
a good resume of an application of modern spectral analysis 
techniques. Appendix II (38 pages, Prof. Dowell) gives some 
example problems that are pertinent to Chapters 2-4 and their 
solutions. 

This book gives a good exposition of basic principles and a 
good overview of the diverse field of aeroelasticity from a 
modern point of view. As the title indicates, it is primarily 
directed as a textbook rather than to the practitioner. It 
supplements reference [1] rather than replacing it, however, as 
the range of topics considered are somewhat different. 
Further emphasis might have also been given to testing 
techniques and experimental results. The book is recom
mended and Profs. Dowell, Sisto, Scanlan, and Curtiss are to 
be commended for this addition to the literature. 
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The Calculus of Variations and Optimal Control. By George 
Leitmann. Plenum Press, New York, 1981, 311 pages. Price 
$35.00. 

REVIEWED BY DANIEL TABAK4 

A large variety of books covering the topics of calculus of 
variations and optimal control exists. Thus, a reader may 
naturally ask: what is so special about this book that would 
justify its addition to the practically oversaturated market? 
Once the book is read, the answer to this question becomes 
simple: it is not the contents of the book, but the way the book 
is written that makes it so special and outstanding. Before 
elucidating on this point, let us first look at the contents. 

The book covers the basic theory of the calculus of 
variations and optimal control. It is accordingly divided into 
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two parts; Part I, Calculus of Variations (Chapters 1-8) and 
Part II, Optimal Control (Chapters 9-17). Part I includes the 
topics of necessary conditions for an extremum, integration 
of the Euler-Lagrange equation, the inverse problem, the 
Weierstrass and Jacobi necessary conditions, and the corner 
conditions. Part II includes the topics of optimality principle, 
optimal trajectories, Maximum Principle, special cases of 
optimal control problems, sufficient conditions, feedback 
control, and optimization with vector-valued cost. The last 
topic makes the book just about unique contents-wise; very 
few books touch on it. Practically all chapters contain 
illustrative examples and exercises for students. A list of 
references, an extensive bibliography and and index are given 
at the end of the book. 

The book contains a rigorous mathematical presentation of 
the basic theoretical results. At the same time it is very clearly 
written and easy to learn from and to teach with. (In fact, it 
has already been successfully used by this reviewer as a self-
paced text for graduate students.) Its numerous solved 
examples and clear figures make it even more attractive to the 
reader. It contains some specific economic and aerospace 
application examples of optimal control implementation. 

It is this particular combination of mathematical rigor with 
an excellent tutorial lucidity that makes the book so unique 
and its use so widely recommendable. The book can serve as a 
excellent primary text in optimal control for graduate 
students. Since it contains examples from many diverse areas, 
it is not restricted to any particular discipline. It can be used 
by students of engineering, mathematics, operations research, 
economics, and other related areas. 

Mechanics of Wave Forces on Offshore Structures. By T. 
Sarpkaya and M. Isaacson. Van Nostrand Reinhold, New 
York, 1981. pp. xiv-651. Price $37.50. 

REVIEWED BY J. V. WEHAUSEN5 

The authors' purpose, as stated in the preface, is to bring 
into one place the extensive and widely dispersed literature on 
wave forces on offshore structures. They speak of the work as 
a text and suggest that it could be used for a graduate course 
in ocean engineering. Have they succeeded? In my opinion 
they have, provided that one takes account of their approach 
to the problem of expounding a large amount of material. 

The book is divided into nine chapters, a short introduction 
discussing the nature of the engineering-problems encountered 
in analyzing ocean structures, another short chapter reviewing 
the fundamental equations for an incompressible Newtonian 
fluid, and then seven chapters with the following titles: "Flow 
Separation and Time-Dependent Flows," "Wave Theories," 
"Wave Forces on Small Bodies," "Wave Forces on Large 
Bodies," "Random Waves and Wave Forces," "Dynamic 
Response of Framed Structures and Vortex-Induced 
Oscillations," and "Models and Prototypes." 

Chapters may be read reasonably independently of one 
another, but may be considered self-contained only if one 
comes to the book with "a good background in mathematics 
and fluid mechanics," a prerequisite stated in the preface. 
With such a background, any serious reader will find this an 
invaluable guide to the current literature. Each chapter is 
followed by an extensive bibliography in which, with few 
exceptions, complete author, title, and source data are given, 
thus making it easy for the reader to locate referenced papers. 
Although developments within the chapters are not suf
ficiently detailed to allow one to avoid going back to the 
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sources, they provide a coherent exposition of the subjects 
treated together with sufficient information about the 
referenced papers so that one can decide whether or not he or 
she needs or wishes to consult them for further details. I do 
not see this as a textbook for even an advanced class, but it (or 
parts of it) could be used as a skeleton to be fleshed out by 
independent reading or supplementary lecturing. 

To say that such an extensive work shows signs of hasty 
writing would be manifestly unfair. Still, it would have 
benefitted by some editorial attention, for it seems to me that 
it contains more misspelled and misused words and more 
awkward or obscure sentences than is normal. However, none 
of this really detracts from its usefulness. The typography 
also deserves comment. It is customary in mathematical text 
to set variables in italic type and operators in roman. Here 
everything is in roman. Although I was aware of this while 
reading, I did not find it any way confusing. If substantial 
costs in typesetting are thus effected, perhaps it should be 
used more widely, although I prefer the usual convention. 

Although it might appear appropriate to compare the book 
under review with a similar one Vagues el Ouvrages Petroliers 
en Mer, by G. Susbielles and Chr. Bratu, Editions Technip, 
Paris, 1981), which appeared almost simultaneously, I think I 
should disqualify myself on the grounds of possible partiality. 
We are fortunate, however, to have two such treatises 
available. 

Techniques of Finite Elements, by B. Irons and S. Ahmad, 
Wiley, New York, 1981. 529 pages. Price $30.95. 

REVIEWED BY K. J. BATHE6 

This is a valuable and enjoyable book to read for those who 
basically know already quite a bit about finite element 
methods. In a conversational style, the authors summarize 
their experiences about almost every topic of finite element 
techniques in linear structural analysis. Details are primarily 
given in the discussion of those methods that the authors have 
researched over the last two decades (and the authors are 
certainly well known in the finite element community for their 
research contributions). Two major topics are the frontal 
solution method and the semiloof elements, for which 
computer programs are also given; but the menu includes a 
large variety of topics, which can be appreciated by studying 
the titles of the 29 chapters: Overview; Basic Techniques; 
Shape Functions; Various Elastic Problems; Nodal Loads 
from Shape Function Routines; Problems of Management; 
Matrix-Structural Theory; The Matched Solution; Con
vergence-The Patch Test; Developing and Implementing 
Elements; How Nodes Hang Together: Front or Band?; 
Element Assembly and Equation Solving; A Frontal Solution 
Package; Roundoff Errors; Further Matrix-Structural 
Theory; Plate Bending; Shells; The Semiloof Beam and Shell; 
Symmetry; Sectorial Symmetry; Nonlinearity; Eigenvalues 
and Numerical Stability; Eigenvalues and Structural 
Problems; Non-Structural Problems; Implications of the 
Patch Test; Interpolation and Numerical Integration; 
Matrices; Vectors and Differential Geometry; and Stress and 
Strain. 

Although quite detailed in some descriptions, the book is 
probably intended to be a strong subjective representation of 
finite element methods, and the authors have obviously not 
researched related literature to a high degree. The most 
notable contribution in this book is that the authors attempt 
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to make the reader appreciate the structural and finite element 
principles from both a mathematical and a physical 
viewpoint. This is a very valuable endeavor and goes well with 
the conversational style of the book. 

The readers most attracted to the volume will probably be 
finite element teachers and researchers who desire to obtain 
further insight into finite element techniques - the authors 
provide much valuable and thought-provoking material in 
that regard. 

Hydrodynamic Stability. By P. Drazin and W. Reid. Cam
bridge University Press, 1981. 525 pages. Price $77.00. 

REVIEWED BY F. H. BUSSE7 

Over the past decades the subject of hydrodynamic stability 
has assumed a central role in theoretical fluid dynamics. In 
spite of some earlier doubts, stability theory has become an 
indispensable tool for the understanding of the onset of 
turbulence in fluid flow and applications of the theory in 
engineering, and physical and environmental sciences are 
growing rapidly. Several books on the subject have been 
published, but there is a continuing demand for clear ex
position of its foundation and methods. 

The book by Drazin and Reid goes the farthest in meeting 
this expectation. Faced with the large variety of stability 
problems, the authors decided to treat the most basic 
problems of stability in detail instead of attempting to cover 
all known hydrodynamic instabilities. Many of the examples 
neglected in the main text appear in the extensive problem 
sections at the end of most chapters. The book starts with a 
discussion of the simplest examples of hydrodynamic in
stability such as Benard convection and Taylor vortices. It 
then proceeds to the more complex problems of the stability 
of parallel shear flows. Both the inviscid problem of stability 
based on Rayleigh's equation and the viscous problem based 
on the Orr-Sommerfeld equation are discussed in considerable 
detail. Asymptotic methods are emphasized, but numerical 
methods are not neglected. A final chapter of the book 
reviews nonlinear aspects of stability theory. Readers in
terested in this area research may regret that only brief 
outlines of various methods and results are given in this 
chapter. But a more complete account of the nonlinear theory 
would probably have required a separate volume. 

While the authors have approached their subject mainly 
from the applied mathematician's point of view, they have 
kept the use of mathematical formalism at a minimum. The 
book should thus be readily accessible to engineers and 
physicists. In fact, the examples treated in this book may serve 
as a suitable introduction to singular perturbation techniques 
such as matched asymptotic expansions. On the other hand, 
physical ideas are not always expressed quite as clearly. In the 
discussion of the Boussinesq approximation, for example, it is 
not evident that the smallness of the ratio between mechanical 
energy and thermal energy variations of a fluid parcel is the 
basis of this approximation. Stress-free boundary conditions 
are summarily described as unrealistic, even though they have 
been well approximated in the experiment of Goldstein and 
Graham (Phys. Fluids, 1969). The reader may also search in 
vain for heuristic physical ideas on the origin of shear flow 
instabilities such as those developed by Lin (1945) and Gill 
(1965). 

But these minor criticisms should not distract from the 
impression that this book is likely to be the standard reference 
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for most aspects of hydrodynamic stability theory for many 
years to come. The book can be recommended as a text for a 
graduate course in hydrodynamic stability. It is well produced 
and remarkably free of misprints. Its success should prompt 
the publisher to make it available soon in a more affordable 
paperback format. 

The Theory of Thin-Walled Bars. By Atle Gjelsvik. Wiley, 
New York, 1981. pp. ix-248. Price $31.50. 

REVIEWED BY D. H. HODGES8 

The theory of bending and torsion of bars is important in 
the design of aircraft, spacecraft, wind turbines, buildings, 
bridges, and ships. Since a general theory of thin-walled bars 
is a relative latecomer to mechanics, textbooks that cover the 
theory in detail, unlike similar books for plate and shell 
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Erratum on "Planar Hertz Contact With Heat Con
duction," by M. Comninou, J. Dundurs, and J. R. Barber, 
and published in the September, 1981, issue of the ASME 
JOURNAL OF APPLIED MECHANICS, Vol. 48, pp. 549-554. 

Reference [16] should read: Theocaris, P. S., and 
Ioakimidis, N. I., "Numerical Integration Methods for the 
Solution of Singular Integral Equations," Quarterly of 
Applied Mathematics, Vol. 35, 1977, pp. 173-183. 

The authors wish to thank Professor N. I. Ioakimidis, who 
brought this matter to their attention. 

theories, are not common. This book is the first English text 
in this field that the reviewer has encountered since Vlasov's 
Thin- Walled Elastic Beams was translated in 1961. 

There are several features that make this book distinctive. 
First is the development of the bar equations from shell 
theory. This approach has the advantage of elucidating the 
physical meaning of certain assumptions that are commonly 
made in beam theories. Second is the development of the 
closed cross-section theory from an extension of open cross-
section theory. The book has many example problems in
volving open and closed cross sections. Third is the 
enlightening discussion of the behavior of the analysis 
variables at junctions involving discontinuities. 

The chapter entitled "Nonlinear Theory" is written clearly 
and for applications that demand arbitrarily large rotations, 
the necessary extension can be developed based on what is 
already given. Solutions for a wide variety of buckling 
problems are given in the chapter on buckling. Plasticity is 
covered in the final chapter. The book would be useful for 
graduate students and researchers in the area of thin-walled 
bars, especially because of the original material it contains, 
which is not available elsewhere in published form. 

Erratum on "Residual Stresses of Czochralski-Grown 
Crystal," by T. Iwaki and N. Kobayashi, and published in the 
December, 1981, issue of the ASME JOURNAL OF APPLIED 
MECHANICS, Vol. 48, pp. 866-870. 

Equation (31) should read: 

K ) f = Jo
rO(ff5)r/af)rff=K)r

7'-(ff5)7"f=o- (3D 
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